Лабораторная работа
«Исследование уравнений и неравенств с параметрами»
Цель работы: углубление и расширение знаний учащихся о способах и методах решения уравнений и неравенств с параметрами.
I.Теоретическая часть.
Определение: (справочник по математике)
Переменная или постоянная величина в уравнении, неравенстве, системе уравнений и др., которая не рассматривается как искомая, а наоборот, решения отыскиваются в зависимости от этой величины.
Постоянная величина, характеризующая некоторый математический объект.
Вспомогательная переменная величина, от которой зависят другие величины, определяющий математический объект.
Параметры встречаются при введении некоторых понятий:
- функция, прямая пропорциональность: у = кх, (х и у - переменные, к – параметр);
- линейная функция: у = кх + в, (х и у – переменные, к и в – параметры)
- уравнение первой степени: ах + в = 0, (х- переменная, а и в – параметры);
- квадратное уравнение; ах2+вх+с=0, (х - переменная, а, в, с - параметры, а≠0).
II.Разбор примеров с решениями:
Пример 1. Решить уравнение ах = 1.
Решение.
Решить уравнение с параметром – значит, для всех допустимых значений параметра найти множество всех решений уравнения.
1) если а ≠ 0, х = 1/а.
2) если а = 0, то данное уравнение решений не имеет.
Ответ: если а = 0, то нет решений;
если а ≠ 0, то х = 1/а.
Пример 2. Решить уравнение: (а2 – 1)х = а + 1.
Решение. Рассмотрим следующие случаи:
1. Если а =1, то уравнение принимает вид 0х = 2 и не имеет решений;
2. Если а = - 1, то уравнение принимает вид 0х = 0, и тогда х - любое действительное число;
3. Если а ≠ 1 и уравнение имеет единственное решение .
Важным этапом решения задач с параметрами является запись ответа. В решении уравнений с параметром составление ответа – это запись всех полученных результатов. И здесь очень важно не забыть отразить в ответе все этапы решения.
Ответ: если а = -1, то х – любое действительное число;
если а = 1, то уравнение не имеет решений;если а = а ≠ 1 , то .
III.Самостоятельная работа
Решить уравнения:
а) (а2- 9)х = а+3;
б) (а2- 3а + 2)х = а – 1.
IV. Сделать вывод
Оценка