Классная работа 20.10.22
Задание ЕГЭ-4.
Тема: Кодирование и декодирование информации.
Параграф 6.
Что проверяется :
Умение кодировать и декодировать информацию.
Что нужно знать :
- кодирование – это перевод информации с одного языка на другой (запись в другой системе символов, в другом алфавите)
- обычно кодированием называют перевод информации с «человеческого» языка на формальный, например, в двоичный код, а декодированием – обратный переход
- один символ исходного сообщения может заменяться одним символом нового кода или несколькими символами, а может быть и наоборот – несколько символов исходного сообщения заменяются одним символом в новом коде (китайские иероглифы обозначают целые слова и понятия)
- кодирование может быть равномерное и неравномерное ; при равномерном кодировании все символы кодируются кодами равной длины; при неравномерном кодировании разные символы могут кодироваться кодами разной длины, это затрудняет декодирование
Что нужно знать :
- закодированное сообщение можно однозначно декодировать с начала, если выполняется условие Фано : никакое кодовое слово не является началом другого кодового слова;
- закодированное сообщение можно однозначно декодировать с конца, если выполняется обратное условие Фано : никакое кодовое слово не является окончанием другого кодового слова;
- условие Фано – это достаточное, но не необходимое условие однозначного декодирования.
1. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В, Г использовали соответственно кодовые слова 000, 001, 10, 11. Укажите кратчайшее возможное кодовое слово для буквы Д, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.
1. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В, Г использовали соответственно кодовые слова 000, 001, 10, 11. Укажите кратчайшее возможное кодовое слово для буквы Д, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением. (010)
2. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А – 0; Б – 100; В – 1010; Г – 111; Д – 110. Требуется сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно. Коды остальных букв меняться не должны.
Каким из указанных способов это можно сделать?
1) для буквы В – 101 2) это невозможно
3) для буквы В – 010 4) для буквы Б – 10
2. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А – 0; Б – 100; В – 1010; Г – 111; Д – 110. Требуется сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно. Коды остальных букв меняться не должны.
Каким из указанных способов это можно сделать?
1) для буквы В – 101 2) это невозможно
3) для буквы В – 010 4) для буквы Б – 10
3. Для кодирования некоторой последовательности, состоящей из букв Л, М, Н, П, Р, решили использовать неравномерный двоичный код, удовлетворяющий условию, что никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений.
Для букв Л, М, Н использовали соответственно кодовые слова 00, 01, 11. Для двух оставшихся букв – П и Р – кодовые слова неизвестны. Укажите кратчайшее возможное кодовое слово для буквы П, при котором код будет удовлетворять указанному условию. Если таких кодов несколько, укажите код с наименьшим числовым значением.
3. Для кодирования некоторой последовательности, состоящей из букв Л, М, Н, П, Р, решили использовать неравномерный двоичный код, удовлетворяющий условию, что никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений.
Для букв Л, М, Н использовали соответственно кодовые слова 00, 01, 11. Для двух оставшихся букв – П и Р – кодовые слова неизвестны. Укажите кратчайшее возможное кодовое слово для буквы П, при котором код будет удовлетворять указанному условию. Если таких кодов несколько, укажите код с наименьшим числовым значением. (100)
4. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы А использовали кодовое слово 0; для буквы Б – кодовое слово 10. Какова наименьшая возможная
сумма длин всех шести кодовых слов? Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
4. Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы А использовали кодовое слово 0; для буквы Б – кодовое слово 10. Какова наименьшая возможная
сумма длин всех шести кодовых слов? Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений. (19)
5. По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я . Для передачи используется двоичный к од, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А – 11, Б – 101, Я – 010. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ГРАММ?
5. По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я . Для передачи используется двоичный к од, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А – 11, Б – 101, Я – 010. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ГРАММ? (13)