Меню
Разработки
Разработки  /  Геометрия  /  Презентации  /  7 класс  /  Аксиомы параллельных прямых

Аксиомы параллельных прямых

11.09.2020

Содержимое разработки

Предмет: геометрия  (7 класс)  Тема: Аксиома параллельных прямых   Подготовила материал: Учитель по математике, МБОУ СШ № 30 города Дзержинск: Кобякова Анна Викторовна

Предмет: геометрия (7 класс) Тема: Аксиома параллельных прямых

Подготовила материал: Учитель по математике, МБОУ СШ № 30 города Дзержинск: Кобякова Анна Викторовна

Введение: Аксиома параллельных прямых Рассмотрим произвольную прямую и точку М, не лежащую на ней (Рис.1). Докажем, что через точку М можно провести прямую, параллельную прямой . Для этого проведем через точку М две прямые: сначала прямую перпендикулярно к прямой , а затем прямую перпендикулярно к прямой (Рис.2). А из того, что две прямые и перпендикулярны к третьей прямой следует, что они параллельны (а||b).

Введение: Аксиома параллельных прямых

  • Рассмотрим произвольную прямую и точку М, не лежащую на ней (Рис.1).
  • Докажем, что через точку М можно провести прямую, параллельную прямой . Для этого проведем через точку М две прямые: сначала прямую перпендикулярно к прямой , а затем прямую перпендикулярно к прямой (Рис.2). А из того, что две прямые и перпендикулярны к третьей прямой следует, что они параллельны (а||b).
Введение: Аксиома параллельных прямых Возникает вопрос: можно ли через точку М провести еще одну прямую, параллельную прямой ? Если прямую

Введение: Аксиома параллельных прямых

  • Возникает вопрос: можно ли через точку М провести еще одну прямую, параллельную прямой ?
  • Если прямую "повернуть" на какой-то угол вокруг точки М, то она пересечет прямую (прямая ' на рис.3).
  • То есть нам кажется, что через точку М нельзя провести прямую отличную от прямой , параллельную прямой . Утверждение о единственности прямой, проходящей через данную точку параллельно данной прямой, не может быть доказано на основе остальных аксиом Евклида, а само является аксиомой.
Введение: Аксиома параллельных прямых Таким образом мы можем сделать следующий вывод: Через точку не лежащую на прямой проходит одна прямая, параллельная данной .

Введение: Аксиома параллельных прямых

  • Таким образом мы можем сделать следующий вывод:
  • Через точку не лежащую на прямой проходит одна прямая, параллельная данной .
Аксиома параллельных прямых (следствия ) 1). Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую . Данное свойство можно доказать на следующем примере: Дано: a||b, c ∩ a = М(Рис.4). Доказать: c ∩ b

Аксиома параллельных прямых (следствия )

  • 1). Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую . Данное свойство можно доказать на следующем примере:
  • Дано: a||b, c ∩ a = М(Рис.4).
  • Доказать: c ∩ b
Аксиома параллельных прямых (следствия ) Доказательство : Если мы предположим, что прямая не пересекает прямую , то прямая будет параллельна прямой , а по условию через точку М проходит прямая параллельная прямой , значит получим, что через точку М будут проходить две прямые и параллельные прямой (Рис.5).Но это противоречит аксиоме параллельных прямых, значит, наше предположение неверно, и прямая пересекает прямую , т.е. . Что и требовалось доказать.

Аксиома параллельных прямых (следствия )

Доказательство :

Если мы предположим, что прямая не пересекает прямую , то прямая будет параллельна прямой , а по условию через точку М проходит прямая параллельная прямой , значит получим, что через точку М будут проходить две прямые и параллельные прямой (Рис.5).Но это противоречит аксиоме параллельных прямых, значит, наше предположение неверно, и прямая пересекает прямую , т.е. . Что и требовалось доказать.

Аксиома параллельных прямых (следствия ) 2). Если две прямые параллельны третьей прямой, то они параллельны. Данное свойство мы докажем следующим образом.  Дано: a || c, b||c (Рис.6) Доказать : а||b

Аксиома параллельных прямых (следствия )

  • 2). Если две прямые параллельны третьей прямой, то они параллельны. Данное свойство мы докажем следующим образом.
  • Дано: a || c, b||c (Рис.6)
  • Доказать : а||b

Аксиома параллельных прямых (следствия ) Доказательство: Предположим, что прямые и не параллельны, т.е. пересекаются в некоторой точке М (Рис.7).Тогда получим, что через точку М проходят две прямые и параллельные прямой , т.к. по условию и . Но это противоречит аксиоме параллельных прямых, следовательно, наше предположение неверно, значит, прямые и параллельны, т.е. . Что и требовалось доказать. Следствие - утверждение, которое выводится непосредственно из аксиом или теорем.

Аксиома параллельных прямых (следствия )

  • Доказательство:
  • Предположим, что прямые и не параллельны, т.е. пересекаются в некоторой точке М (Рис.7).Тогда получим, что через точку М проходят две прямые и параллельные прямой , т.к. по условию и . Но это противоречит аксиоме параллельных прямых, следовательно, наше предположение неверно, значит, прямые и параллельны, т.е. . Что и требовалось доказать.
  • Следствие - утверждение, которое выводится непосредственно из аксиом или теорем.
Аксиома параллельных прямых (задачи)

Аксиома параллельных прямых (задачи)

Ссылки: Учебник А.Атанасян « Геометрия 7-8-9 класс» стр. 57-60, стр.65  https:// budu5.com/manual/chapter/3400  http://ru.solverbook.com/spravochnik/aksiomy/aksioma-parallelnyx-pryamyx /

Ссылки:

  • Учебник А.Атанасян « Геометрия 7-8-9 класс» стр. 57-60, стр.65
  • https:// budu5.com/manual/chapter/3400
  • http://ru.solverbook.com/spravochnik/aksiomy/aksioma-parallelnyx-pryamyx /
-80%
Курсы повышения квалификации

Активизация основных видов деятельности учащихся на уроках математики в условиях реализации ФГОС в основной школе

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Аксиомы параллельных прямых (301.98 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт