Меню
Видеоучебник
Видеоучебник  /  Физика  /  10 класс  /  Физика 10 класс  /  Электроёмкость. Конденсаторы

Электроёмкость. Конденсаторы

Урок 67. Физика 10 класс

На этом уроке мы познакомимся с таким устройством, как конденсатор. Мы рассмотрим классификацию конденсаторов, а также принцип его работы. Кроме этого, мы познакомимся основной характеристикой конденсатора – электроёмкостью.

Конспект урока "Электроёмкость. Конденсаторы"

Изучение электрических явлений вы начали еще в восьмом классе, познакомившись с явлением электризации. Сегодня мы можем провести классический опыт. Возьмем две стеклянные банки разных размеров, предварительно изолировав их от земли. Поднесем к каждой из этих банок одинаковый заряженный шар на изолированной ручке.

Если теперь мы измерим потенциалы каждой из банок, с помощью электрометров, то убедимся, что эти потенциалы не равны. Это наводит на мысли о том, что на различных телах накопление заряда происходит по-разному. Другой опыт, который мы можем провести — это разноименно зарядить два проводника.

Как вы понимаете, с увеличением заряда, будет расти напряженность электрического поля между данными проводниками. При неизменном расстоянии между проводниками, с увеличением напряженности будет расти и разность потенциалов, то есть, электрическое напряжение. При достаточно большом напряжении, диэлектрик становится проводящим (поскольку не существует идеальных диэлектриков). Возникает явление, которое называется пробоем диэлектрика: между проводниками проскакивает искра, в результате чего они разряжаются. Это говорит нам о том, что чем меньше увеличивается напряжение с увеличением заряда, тем больший заряд можно накопить. Таким образом, мы можем заключить, что необходимо ввести физическую величину, которая характеризует способность накапливать электрический заряд. Эта величина называется электроемкостью или просто емкостью.

Поскольку напряжение между двумя проводниками пропорционально напряженности электрического поля, а напряженность, в свою очередь, пропорциональна зарядам на проводниках, можно сделать вывод, что напряжение пропорционально зарядам на проводниках:

Как мы уже сказали, чем меньше увеличивается напряжение с увеличением заряда, тем больший заряд можно накопить. Поэтому, определение электроемкости для двух проводников звучит так: электроемкость двух проводников — это отношение заряда одного из проводников к разности потенциалов между ними:

Единицей измерения электроемкости является фарад (в честь Майкла Фарадея):

Как видно из формулы электроемкость двух проводников равна 1 Ф, если при сообщении им зарядов 1 Кл и –1 Кл, между ними возникает напряжение в 1 В.

Как мы уже говорили, заряд в 1 Кл — это очень большой заряд, поэтому, электроемкость в 1 Ф — тоже очень большая. На практике используются такие величины, как микрофарады и нанофарады.

Итак, мы дали определение электроемкости для двух проводников. Система проводников, используемых для накопления электрического заряда, называется конденсатором. Конденсатор состоит из двух проводников, которые разделены слоем диэлектрика.

Толщина диэлектрика должна быть невелика по сравнению с размерами проводников. Проводники в конденсаторе называются обкладками. В качестве обкладок часто используют очень тонкие металлические пластины, а в качестве диэлектрика — бумагу или воздух.

На сегодняшнем уроке мы рассмотрим плоский конденсатор. Плоский конденсатор состоит из двух параллельных пластин, находящихся на малом расстоянии друг от друга.

Поле внутри такого конденсатора будет однородным. Для того, чтобы зарядить конденсатор, достаточно подключить его к полюсам источника тока. Накопив заряд, конденсатор может сам являться источником тока некоторое время. Но, надо сказать, что конденсатор разряжается очень быстро. Электроемкость плоского конденсатора характеризуется площадью пластин и расстоянием между этими пластинами:

Очевидно, что чем больше площадь пластин, тем больший заряд можно на них накопить. Тем не менее, чем больше расстояние между пластинами, тем выше напряжение между ними:

Поскольку электроемкость обратно пропорциональна напряжению, мы можем заключить, что чем больше расстояние между пластинами, тем меньше электроемкость плоского конденсатора:

Таким образом, мы выяснили, что электроемкость плоского конденсатора прямо пропорциональна площади пластин и обратно пропорциональна расстоянию между ними:

Конечно же, электроемкость зависит и от диэлектрика, который используется в конденсаторе, поэтому в формуле мы видим диэлектрическую проницаемость. Также, в формуле есть коэффициент пропорциональности, который называется электрической постоянной. Значение электрической постоянной соответствует диэлектрической проницаемости вакуума:

Конденсаторы классифицируются по нескольким признакам: по форме обкладок, по типу диэлектрика и по назначению.

В основном конденсаторы бывают трех форм: плоские, сферические и цилиндрические.

Также конденсаторы разделяют по типу диэлектрика на керамические, бумажные и электролитические конденсаторы.

Кроме этого, конденсаторы классифицируются по назначению.

Помимо конденсаторов с постоянной электроемкостью, существуют также конденсаторы, которые обладают переменной электроемкостью. В таком конденсаторе есть статор и ротор. Вращая ротор, можно изменять суммарную площадь перекрываемую пластинами и, таким образом, изменять электроемкость. Конденсаторы с переменной емкостью широко используются в радиотехнике. Например, изменяя емкость конденсатора, можно настраивать радиоприемник на нужную частоту (или, как мы говорим, на нужную волну).

Кроме этого, на практике нередко используются конденсаторные батареи. Конденсаторная батарея представляет собой набор из нескольких конденсаторов постоянной емкости, соединенных между собой параллельно или последовательно. В зависимости от соединения, между параметрами конденсатора наблюдаются различные закономерности, которые сведены в таблицу:

Пример решения задачи.

Задача. Когда конденсатор с постоянной электроёмкостью зарядили от источника тока, напряжение между пластинами конденсатора составило 300 В. После этого, к конденсатору подключили лампочку, которая прогорела ровно 1,5 с, а потом погасла. Предполагая, что в течение этих полутора секунд, по лампочке проходил постоянный ток в 20 мА, определите электроёмкость данного конденсатора.

0
11827

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт