Грегор Мендель изучал закономерности, по которым признаки передаются из поколения в поколение. Проводя опыты по скрещиванию различных сортов гороха, он установил ряд законов наследования, положивших начало генетике, известные нам как законы Менделя.
Основой работы Менделя был — гибридологический метод. Суть его заключается в скрещивании (гибридизации) организмов, которые отличаются друг от друга какими-либо признаками, и в последующем анализе характера наследования этих признаков у потомства.
Для своих первых опытов Мендель выбирал растения, чётко различающиеся по какой-либо паре признаков, например такие, как форма и цвет семян, цвет соцветий и высота растения.
Если скрещивать организмы, которые будут отличаться только по одному признаку (например, по цвету семян или только по форме семян), за который отвечают аллели одного гена, то такое скрещивание называют моногибридным.
Так как горох самоопыляемое растение, то в природных условиях его сорта не скрещиваются. При самоопылении горох даёт генетически идентичное и морфологически сходное потомство. Такие сорта называют чистыми линиями.
Мендель выбрал две чистые линии растений гороха, которые отличались только по одному признаку. У одних окраска горошин была всегда жёлтая, а у других всегда зелёная. (При условии самоопыления).
Если пользоваться терминами, которые появились через много лет после работ Менделя, то можно сказать, что клетки растений гороха одного сорта содержат по два гена только жёлтой окраски, а гены растений другого сорта — по два гена только зелёной окраски.
Гены, ответственные за развитие только одного признака (например, цвет семян), получили название аллельных генов.
Аллели — это различные формы одного и того же гена, которые расположены в одинаковых участках (локусах) гомологичных хромосом и определяют противоположные варианты развития одного и того же признака.
Если организм содержит два одинаковых аллельных гена (например, оба гена жёлтого цвета семян), то такие организмы называют гомозиготными.
Если же аллельные гены различны (то есть один из них определяет жёлтую, а другой зелёную окраску семян), то такие организмы называют гетерозиготными.
В генетике совокупность всех генов какого-либо организма называют — генотипом.
А совокупность всех внешних, внутренних признаков и свойств организма называют — фенотипом.
Так как горох самоопыляемое растение, Мендель решил самостоятельно произвести перекрёстное опыление двух растений.
Семена гороха, опылённого опытным путём, были жёлтые.
Затем Мендель скрестил растения с пурпурными и белыми цветками. В результате получились гибриды с пурпурными цветками.
А при скрещивании гороха с гладкими и морщинистыми семенами наследовалась гладкая форма семян.
Преобладающие признаки (желтизну семян, пурпурный окрас цветков и гладкость семян) Мендель назвал доминантными. А подавляемые признаки (зелёный цвет семян, белый окрас цветков и морщинистость семян) — он назвал рецессивными.
Доминантные признаки принято обозначать прописными латинскими буквами, а рецессивные — строчными.
Исходя из данных опытов, Мендель сформулировал закон единообразия гибридов первого поколения, который гласит, что при скрещивании двух гомозиготных организмов, которые отличаются друг от друга одним признаком, все гибриды 1-го поколения будут иметь признак одного из родителей и поколение по данному признаку будет единообразным. Это первый закон Менделя.
Связь между поколениями обеспечивается через половые клетки — гаметы. Значит, каждая гамета содержит только один «элемент наследственности» жёлтого или зелёного цвета горошин.
Грегор Мендель сформулировал закон частоты гамет, который гласит, что при образовании гамет в каждую из них попадает только один из двух «элементов наследственности», отвечающий за данный признак.
В оплодотворённую яйцеклетку попали оба гена. Но почему же проявился только жёлтый цвет. Куда исчез зелёный?
Чтобы выяснить это, Мендель посеял семена первого поколения.
Теперь оплодотворение происходило как обычно — самоопылением.
Какими же будут семена у второго поколения гибридов? Среди жёлтых горошин оказались зелёные.
Проследим, каким образом получается такое соотношение.
При скрещивании гибридов первого поколения образуются такие сочетания...
А-большое А-большое… А-большое а-малое… А-большое а-малое… а-малое, а-малое.
Сочетание, где есть доминантный ген, даёт жёлтую горошину.
И только при сочетании рецессивных генов (а-малое, а-малое) — зелёную горошину.
Значит, рецессивный ген, отвечающий за зелёный цвет семян, не исчезал совсем. А был подавлен.
Мендель сорвал все бобы гороха. И подсчитал все горошины. Получилось, что 6022 горошины были жёлтого цвета, а 2001 ― зелёного.
То есть соотношение жёлтых и зелёных семян получилось три к одному (3:1).
Явление, при котором скрещивание приводит к образованию потомства частично с доминантными, частично с рецессивными признаками, получило название расщепления.
II закон Менделя, или закон расщепления гибридов во втором поколении гласит, что при скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются организмы с рецессивными признаками. Они составляют одну четвертую часть от всего числа потомков второго поколения.
Посмотрим, как происходит наследование признаков.
Выделим гомологичную пару хромосом. Обозначим гены (отвечающие за жёлтую окраску семян) на хромосомах условно точкой.
В результате мейоза получаются 4 половые клетки — гаметы. Каждая гамета содержит только один ген, который обуславливает жёлтую окраску семян. Таким же образом получаются гаметы, которые содержат гены зелёной окраски семян.
Далее мы будем показывать гаметы схематично. При слиянии женской и мужской гамет образуется оплодотворённая яйцеклетка ― зигота. В ней восстанавливается двойной набор генов. Теперь зигота несёт гены и жёлтой и зелёной окраски семян.
Зигота развивается в гибридное растение. На будущий год во время цветения вновь происходит мейоз.
И вновь образуются гаметы. Каждая хромосома несёт либо жёлтый, либо зелёный ген окраски семян.
Далее при слиянии женских и мужских гамет могут получиться такие сочетания: в трёх из них присутствуют доминантные гены, и лишь в одном оба гена рецессивные, дающие зелёные семена. Таким образом, цитологические данные подтвердили идею Менделя о чистоте гамет.
Мендель также работал над скрещиванием организмов, которые отличаются по двум признакам. Такое скрещивание называют дигибридным. Если скрещивать организмы, которые отличаются по трём признакам, то такое скрещивание называют тригибридным. Скрещивание особей, которые отличаются по нескольким признакам, называют полигибридным.
Гибриды, гетерозиготные по двум парам генов, называют дигетерозиготными, а в случае отличия их по трём и многим генам —три- и полигетерозиготными соответственно.
Грегор Мендель приступил к изучению результатов дигибридного скрещивания после того, как установил закономерности моногибридного скрещивания.
Он исследовал характер расщепления при скрещивании двух чистых линий гороха, которые отличались цветом семян (жёлтые и зелёные) и их формой (гладкие и морщинистые). При таком скрещивании признаки определяются различными парами генов: одна пара генов отвечает за цвет семян, другая — за их форму. При этом аллель жёлтой окраски горошин (А-большое), доминирует над зелёной (а-малое). А аллель гладкой формы семян (Бэ-большое) — над морщинистой (бэ-малое).
По закону единообразия гибридов первого поколения семена гороха (дигибридные семена) в поколении (Эф-один) были жёлтыми и гладкими. А генотип гибридов первого поколения — А-большое а-малое Бэ-большое — бэ-малое, т. е. является дигетерозиготным.
На второй год после самоопыления гибридов первого поколения во втором поколении, в соответствии с законом расщепления, вновь появились морщинистые и зелёные семена.
Оказалось, что 315 горошин были жёлтыми гладкими, 101 жёлтыми морщинистыми, 108 зелёными гладкими и 32 зелёными морщинистыми. Соотношение фенотипов очень близко к соотношению 9:3:3:1 девять к трём к трём к одному.
Для того чтобы понять, как комбинируются при скрещивании двух гибридов первого поколения все возможные гаметы, английским генетиком Реджинальдом Пеннетом была предложена решётка, которая впоследствии получила название «решётка Пеннета». Она позволяет наглядно представить все виды комбинаций генов в гаметах и результаты их слияния.
Вдоль одной стороны решётки располагают мужские гаметы, вдоль другой — женские. А в клетках таблицы на пересечении строк и колонок записывают генотипы потомства в виде комбинаций этих гамет.
В результате слияния четырёх видов гамет, возникающих у растений из первого поколения, во втором поколении (Эф-два) возникает девять различных генотипов. Но эти девять генотипов проявляются в виде четырёх фенотипов: жёлтые-гладкие, жёлтые-морщинистые, зелёные-гладкие и зелёные морщинистые семена. Причём соотношение фенотипов составляет 9:3:3:1. Cоотношение между жёлтыми и зелёными горошинами будет равняться 3:1. Такое же соотношение будет и между гладкими и морщинистыми семенами.
Таким образом, расщепление при дигибридном скрещивании представляет собой два независимо идущих моногибридных расщепления, которые как бы накладываются друг на друга.
Закон независимого наследования признаков (III закон Менделя). Мендель обнаружил что расщепление по разным признакам происходит независимо. В этом сущность третьего закона Менделя — закона независимого наследования признаков, или независимого комбинирования генов.
Он формулируется так: при дигибридном скрещивании гены и признаки, за которые эти гены отвечают, наследуются независимо друг от друга.
Это означает, что при образовании материнских и отцовских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары.
Следует помнить, что данный закон справедлив в тех случаях, когда гены рассматриваемых признаков располагаются в разных гомологичных хромосомах.
Так Мендель, не имея представления о генах, показал механизмы наследования признаков, изучая закономерности, по которым признаки передаются из поколения в поколение.