Меню
Видеоучебник
Видеоучебник  /  Физика  /  8 класс  /  Физика 8 класс (ФГОС)  /  Кипение. Удельная теплота парообразования

Кипение. Удельная теплота парообразования

Урок 13. Физика 8 класс (ФГОС)

Как говорил Карл Линней: «В естественной науке принципы должны подтверждаться наблюдениями». На этом уроке мы познакомимся со вторым видом парообразования — кипением. Узнаем, почему температура жидкости в процессе кипения остаётся неизменной. Выясним, от чего зависит температура кипения. Познакомимся с новой физической величиной — удельной теплотой парообразования. А также научимся рассчитывать количество теплоты, которое необходимо сообщить веществу для его перевода из жидкого состояния в газообразное.

Конспект урока "Кипение. Удельная теплота парообразования"

Мы узнали, что существуют два вида парообразования — это испарение и кипение. Напомним, что под испарением подразумевается парообразование, идущее со свободной поверхности жидкости. На этом уроке более подробно рассмотрим второй вид парообразования — кипение жидкости.

Итак, вы уже знаете, что испарение жидкости идёт при любой температуре и вызывает её охлаждение. Но возникает закономерный вопрос: а как будет происходить испарение, если жидкости передавать энергию, то есть подводить теплоту?

Ответим на него, проведя такой опыт. Поставим на электроплитку стакан с водой. По термометру будем следить за изменением температуры воды в стакане с течением времени.

Вначале температура воды сначала растёт. На дне стакана появляется множество маленьких пузырьков. Их размеры постепенно увеличиваются, так как вода испаряется внутрь пузырьков и давление пара в пузырьках при нагревании повышается. Пузырьки отрываются ото дна и стенок и движутся вверх под действием архимедовой силы. Поскольку вода ещё полностью не прогрелась и температура верхних слоёв воды меньше, чем нижних, пар в пузырьках начинает конденсироваться. Их объём уменьшается, пузырьки сжимаются, и мы слышим характерный шум. Когда вода прогреется по всему объёму, пузырьки с паром уже смогут подняться до поверхности.

Если давление пара внутри пузырька больше, чем над жидкостью, он разрывается, и пар выходит наружу. Посмотрим на термометр. Он показывает температуру, близкую к ста градусам, и она практически не меняется. А пузырьков все больше и больше поднимается, и лопается у поверхности, выбрасывая пар в атмосферу. Вода кипит.

Кипение — это процесс парообразования, идущий по всему объёму жидкости при определённой температуре.

Действительно, любой пузырёк можно рассматривать как сосуд с паром внутри жидкости, с поверхности стенок которого идёт испарение и обратный процесс — возврат молекул в жидкость, то есть конденсация.

Температура, при которой происходит кипение жидкости, называется температурой кипения.

Температура кипения у разных жидкостей различна. Это и понятно, ведь различна энергия взаимодействия их молекул.

Как видно из таблицы, более летучие жидкости — это эфир или спирт — кипят при более низкой температуре, чем, например, вода. Это связано с тем, что давление насыщенных паров этих жидкостей уже при комнатной температуре достаточно велико, поскольку их молекулы слабее связаны между собой силами притяжения, чем молекулы других веществ.

А случайно ли мы, говоря о температуре кипения жидкости, указываем давление?

Нет, не случайно. Пузырьки кипящей жидкости лопаются при условии, что давление пара в них не меньше, чем давление снаружи. Значит, чем меньше внешнее давление, тем при более низкой температуре закипит жидкость.

Подтвердим это опытом. Нальём в колбу тёплой воды при температуре пятьдесят градусов. Закроем колбу и подсоединим к откачивающему насосу. Теперь откачаем воздух из колбы.

Вода закипит, хотя её температура меньше 100 оС. Но это не значит, что в такой воде можно сварить яйцо. Яйцо варится не потому, что вода кипит, а потому, что она горячая. А если в специальных условиях создать, например, высокое давление над поверхностью воды, то в ней можно будет расплавить олово, но вода так и не будет кипеть.

Зависимость температуры кипения от внешнего давления используется в практических целях. Например, для стерилизации медицинских инструментов их помещают в герметически закрытые камеры-автоклавы, вода в которых кипит при температуре значительно выше, чем сто градусов.

А мощные паровые турбины работают при давлении, в двести раз большем атмосферного, и температуре, в шесть раз превышающей температуру кипения воды при нормальном давлении. А это существенно повышает их коэффициент полезного действия.

В быту мы используем кастрюли-скороварки. В них давление пара в два раза больше атмосферного и температура кипения воды достигает ста двадцати градусов, что существенно уменьшает время приготовления пищи, по сравнению с обычной кастрюлей.

Но вернёмся к парообразованию. Итак, мы с вами видели, что во время кипения воды, её температура практически не меняется. Но ведь энергия (от нагретой плитки) жидкостью поглощается.  Тогда возникает закономерный вопрос: Куда же уходит эта энергия?

Энергия, полученная жидкостью, идёт на превращение её в пар. Пока нагреваемая жидкость не кипит, парообразование происходит только с её поверхности. Часть сообщаемой жидкости энергии расходуется на компенсацию потери жидкостью энергии при испарении, а часть — на увеличение внутренней энергии жидкости, о чём свидетельствует увеличение её температуры.

При достижении температуры кипения парообразование происходит уже во всём объёме жидкости. Переход жидкости в газообразное состояние связан с увеличением расстояний между молекулами и соответственно с преодолением притяжения между ними. На совершение работы по преодолению сил притяжения между молекулами и расходуется энергия, подводимая к жидкости. Так происходит до тех пор, пока вся жидкость не превратится в пар. Вот почему температура жидкости остаётся постоянной, пока она кипит.

Таким образом, чтобы превратить в пар жидкость при температуре кипения, необходимо передать ей определённое количество теплоты. Эта энергия характеризуется величиной, называемой удельной теплотой парообразования.

Удельная теплота парообразования равна количеству теплоты, которое нужно сообщить веществу массой один килограмм для превращения его из жидкого состояния в газообразное при температуре кипения.

Обозначается удельная теплота парообразования латинской буквой L:

[L] = [Дж]

Значения удельной теплоты парообразования определяются экспериментально.

А что значит: удельная теплота парообразования спирта равна 900 000 Дж/кг? Это значит, что для превращения 1 кг спирта из жидкого состояния в газообразное при температуре кипения необходимо затратить 900 000 Дж теплоты.

Очевидно, что если необходимо превратить в пар при температуре кипения не 1 кг спирта, а, например, 5, то потребуется затратить количество теплоты в 5 раз больше.

Таким образом, чтобы найти количество теплоты, которое необходимо сообщить веществу массой m, для его перехода из жидкого состояния в газообразное, необходимо удельную теплоту парообразования этого вещества умножить на его массу:

Q = Lm

Как показывают многочисленные опыты, при конденсации пара выделяется некоторое количество теплоты, значение которой равно значению количества теплоты, полученного жидкостью при парообразовании при той же температуре.

Пример решения задач.

Задача 1. Определите, какое количество теплоты необходимо затратить, чтобы двести грамм воды, находящейся при температуре двадцать градусов Цельсия, полностью превратить в пар при ста градусах?

9295

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт