Меню
Конспекты
Конспекты  /  Физика  /  10 класс  /  Физика 10 класс ФГОС  /  Сила. Первый закон Ньютона

Сила. Первый закон Ньютона

Урок 10. Физика 10 класс ФГОС

В этом видеоуроке мы выясним, что является причиной изменения скорости тела. Вспомним, что такое масса тела и в каких единицах она измеряется. Сформулируем первый закон Ньютона, узнаем, какие системы отсчёта называются инерциальными.

Конспект урока "Сила. Первый закон Ньютона"

На прошлом уроке мы с вами начали рассматривать раздел механики, который выявляет причины, определяющие характер движения, и объясняет, каким образом они влияют на движение.

Например, пусть у нас есть игрушечная машинка с прикреплённой к ней металлической линейкой. Машинка покоится. Что с ней произойдёт, если мы пережжём нить?

Прав окажется тот, кто скажет: «Ничего», ведь у нас нет второго тела, с которым эта машинка взаимодействовала бы. А вот если возле согнутого конца линейки поставить ещё одну точно такую же машинку, то после пережигания нити они обе придут в движение. О чём нам говорят результаты эксперимента? Правильно, о том, что для изменения скорости одного тела понадобилось второе тело — вторая машинка. Они обе пришли в движение, обе они стали двигаться относительно стола и обе подействовали друг на друга. Значит, действие одного тела на другое не может быть односторонним.

Для количественного описания действия одного тела на другое в механике вводится понятие силы. Сила — это физическая векторная величина, являющаяся количественной мерой воздействия одного тела на другое, в результате которого тела получают ускорение или деформируются.

Напомним, что силу мы обозначаем большой латинской буквой F, а измеряем её в ньютонах.

С самого начала нужно запомнить, что понятие силы относится именно к двум телам, а не к одному. Ведь всегда можно указать тело, на которое действует сила, и тело, со стороны которого она действует. Так, на поднятый мячик действует сила тяжести со стороны Земли, а на груз, подвешенный на пружине, помимо силы тяжести, действует ещё и сила упругости со стороны пружины.

Для количественного определения силы мы должны научится её измерять. Лишь тогда мы можем говорить о силе как о физической величине. Поэтому важно знать, что две силы независимо от их природы считаются равными и противоположно направленными, если их одновременное действие на тело не меняет его скорости (то есть не сообщает телу ускорение).

Это определение позволяет измерять силы, если одну из них принять за единицу измерения. Давайте посмотрим, как это делается. В качестве эталона единицы силы выберем такую силу, с которой эталонная пружинка действует на прикреплённое к ней тело при своём фиксированном растяжении.

Сила F1 — эта сила, удерживающая тело в состоянии равновесия. Тогда, согласно определению, эти две силы будут равными по модулю и противоположны по направлению, так как под воздействием этих сил тело не получает ускорение. Причём сила F1 может быть любой природы.

Если к телу прикрепить не одну, а две эталонных пружины и растянуть их так же, как и в первом случае, то их равнодействующая будет равна 2F0. Тогда сила F2, направленная в противоположную сторону, по модулю будет равна 2F0, если все три силы, действуя одновременно на тело, не сообщают ему ускорение.

Таким образом, располагая эталоном силы, мы можем измерять силы, кратные эталону.

На практике же для измерения сил чаще всего используется динамометр. Напомним, что его действие основано на законе Гука: при упругой деформации удлинение пружины прямо пропорционально приложенной к ней силе. То есть по длине пружины мы можем судить о величине силы.

Кстати, в механике мы с вами будем иметь дело с тремя типами сил: гравитационными, силами упругости и силами трения. Важно, что эти силы зависят или от расстояний между телами, или от расположения частей тела, или же от относительных скоростей тел.

На прошлом уроке мы с вами говорили о том, что если движение тела происходит без действия на него других тел, то такое движение называют движением по инерции.

Именно из-за явления инерции тело, на которое начинает действовать сила, изменяет свою скорость не мгновенно, а спустя некоторый промежуток времени. Здесь важно понять, что ускорение тело приобретает сразу же — как только начала действовать сила. Но вот скорость нарастает (или убывает) постепенно. Даже очень большой силе требуется время, чтобы сообщить телу большу́ю скорость или остановить его. Именно эти факты имеют ввиду, когда говорят, что тела инертны. Инертность — это свойство тел по-разному изменять свою скорость под действием одной и той же силы.

Проведём одну забавную демонстрацию. У нас есть два висящих на нитях бумажных кольца, между которыми лежит длинная деревянная рейка. Что произойдёт, если с силой ударить по рейке железным стержнем?

Как это ни удивительно, но ломается именно рейка, а бумажные кольца остаются невредимыми.

Опыты показывают, что чем больше время изменения скорости тела, тем оно более инертно.  В седьмом классе вы узнали, что мерой инертности тела является масса. А единицей её измерения в СИ является килограмм. Эталон килограмма представляет собой цилиндр из сплава платины и иридия. Хранится он в международном бюро мер и весов в Севре, в юго-западных предместьях Парижа.

На прошлом уроке мы с вами говорили о том, что тело будет сохранять состояние покоя или равномерного прямолинейного движения до тех пор, пока на него не действуют другие тела или их действия компенсируются. В этом законе заключена главная идея механики: действовать на тело необходимо не для того, чтобы сохранить его скорость постоянной, а чтобы изменить её как по модулю, так и по направлению.

Закон инерции Галилея относится к самому простому случаю движения — движения свободного тела. Чтобы узнать, как движется свободное тело, необходимо обратиться к опыту. Да вот беда: мы не можем поставить ни одного эксперимента, который бы в чистом виде показал нам, как движется свободное тело, потому что таких тел просто нет. Однако мы можем попытаться создать такие условия для тела, при котором влияние внешних взаимодействий было бы минимальным. Например, можно наблюдать за движением стеклянного шарика по горизонтальной поверхности. На его движение будет влиять только сила трения, так как сила тяжести, действующая со стороны Земли, компенсируется силой упругости поверхности. Используя поверхности из различных материалов, мы очень скоро заметим, что на более гладкой поверхности стеклянный шарик теряет свою скорость медленнее всего. Значит, если мы найдём идеально гладкую поверхность и поместим её в вакуум, то наш шарик сможет бесконечно долго не менять скорости своего движения. Именно к такому выводу и пришёл Галилей, сформулировав свой закон инерции.

Идеи Галилея получили своё развитие в работах Исаака Ньютона. В 1686 году он дал строгую формулировку закону и включил его в число основных законов механики. Поэтому закон инерции часто называют первым законом Ньютона.

В нём утверждается, что: существуют такие системы отсчёта, называемые инерциа́льными, в которых тело сохраняет состояние покоя или равномерного прямолинейного движения, если на него не действуют другие тела или их действия компенсируются.

Теоретически доказать первый закон Ньютона нельзя — это аксиома, которую следует рассматривать как результат обобщения экспериментальных фактов.

Выбор инерциальной системы отсчёта является сложной задачей. До сих пор мы с вами систему отсчёта связывали с Землёй. Но является ли эта система инерциальной?

Вопрос этот очень важный. Ведь все эксперименты мы с вами проводим на Земле. Но Земля не только обращается вокруг Солнца почти по круговой орбите, но и вращается вокруг своей оси. Поэтому, строго говоря, система отсчёта, связанная с Землёй, не является инерциальной. Но отличие этой системы от инерциальной будет весьма незначительным, так как за те небольшие промежутки времени, за которые мы проводим эксперименты, дугу орбиты, которую проходит наша планета, можно с большой точностью считать отрезком прямой линии. И ускорение, которое возникает из-за суточного вращения Земли, тоже очень мало. Поэтому с точностью, необходимой для проведения наших экспериментов, мы можем считать систему отсчёта, связанную с Землёй, инерциальной.

Из формулировки первого закона Ньютона следует, что если известна из опыта хотя бы одна инерциальная система отсчёта, то инерциальными будут любые другие системы отсчёта, движущиеся относительно избранной равномерно и прямолинейно. В этом заключается их принцип равноправности.

А теперь давайте рассмотрим пример, с которым наверняка многие из вас сталкивались в жизни. Вот автобус, который движется прямолинейно и равномерно, и с ним связана система отсчёта. Внутри автобуса находится пассажир, который не держится за поручень. Сила, действующая на пассажира со стороны автобуса, компенсируется взаимодействием с Землёй. Что с ним произойдёт, если автобус резко остановится? Правильно, он упадёт вперёд, получив ускорение относительно стенок автобуса. Но это ускорение не вызвано действием какой-то новой силы. Относительно Земли пассажир сохранил свою скорость постоянной. Но так как автобус начал двигаться с ускорением, то относительно него пассажир тоже начал двигаться с ускорением. То есть ускорение появилось просто из-за того, что движение пассажира рассматривается в системе отсчёта, движущейся с ускорением. Такую систему отсчёта мы будем с вами называть неинерциальной.

Рассмотрим с вами один классический пример. К потолку вагона поезда подвесили маятник. Нить его вертикальна, а шарик взаимодействует только с нитью и Землёй. С точки зрения наблюдателя в вагоне и на перроне, шарик покоится, поскольку сумма действующих на него сил равна нулю.

Когда вагон поезда начинает двигаться с ускорением, шарик по инерции стремится сохранить своё состояние покоя и отклоняется на некоторый угол. Так как нить не разрывается, то для наблюдателя с перрона ускорение шарика равно ускорению вагона. А сообщается оно равнодействующей сил притяжения и упругости. Но вот с точки зрения наблюдателя в вагоне, шарик висит неподвижно. Значит, сумма сил, действующих на шарик, должна равняться нулю. Следовательно, на шарик должна действовать ещё какая-то сила, которая определяется тем, что система отсчёта, связанная с вагоном, неинерциальная. Эту силу принято называть силой инерции.

В заключение отметим, что все законы движения и взаимодействия тел, которые мы будем изучать в дальнейшем, сформулированы для инерциальных систем отсчёта, так как в них они имеют самый простой вид. Поэтому при решении задач вначале необходимо выбрать инерциальную систему отсчёта и только потом применять тот или иной закон для решения.

312

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт