Меню
Видеоучебник

Телескопы

Урок 3. Астрономия 11 класс ФГОС

На прошлом уроке мы с вами говорили о том, что основным способом исследования небесных тел и явлений служат астрономические наблюдения. Конечно же, древним астрономам приходилось очень нелегко, так как они имели возможность наблюдать за звёздным небом лишь невооружённым глазом. Настоящий переворот в астрономии произошёл в 1608 году, после того как голландский мастер по изготовлению очков Иоанн Липперсгей обнаружил, что две линзы, расположенные на одной прямой, могут увеличивать предметы. Так была изобретена зрительная труба. В этом видеоуроке мы с вами выясним, что такое телескоп и для чего он используется. Узнаем, чем отличаются рефлекторы от рефракторов. Познакомимся с главными характеристиками телескопа. А также выясним, чем различаются оптические и радиотелескопы.

Конспект урока "Телескопы"

На протяжении тысячелетий астрономы изучали положения небесных объектов на звёздном небе и их взаимное перемещение с течением времени. Конечно же древним астрономам приходилось очень нелегко, так как они имели возможность наблюдать за звёздным небом лишь невооружённым глазом. И в основном благодаря лишь своей железной логике, силе мысли и математическому расчёту Николай Коперник сделал свои гениальные открытия.

Настоящий переворот в астрономии произошёл в 1608 году, после того как голландский мастер по изготовлению очков Иоанн Липперсгей обнаружил, что две линзы, расположенные на одной прямой, могут увеличивать предметы. Так была изобретена зрительная труба.

Этой идеей сразу же воспользовался Галилей. В 1609 году он сконструировал свою первую зрительную трубу с трёхкратным увеличением и направил её в небо. Так зрительная труба превратилась в телескоп.

Кстати, название «телескоп» происходит от двух греческих слов: «теле» — далеко, и «скопео» — смотреть. Оно было предложено в 1611 году греческим математиком Иоаннисом Димисианосом для одной из зрительных труб Галилея.

Телескопы применяют для того, чтобы собрать как можно больше света, идущего от изучаемого объекта, и чтобы получить возможность изучать его мелкие детали, которые недоступны невооружённому глазу. Чем более слабые объекты даёт возможность увидеть телескоп, тем больше его проницающая сила. А возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.

Разрешающая способность телескопа — это наименьший угол между такими двумя близкими звёздами, когда они уже видны как две, а не сливаются зрительно в одну.

Проще говоря, чем меньше размер изображения светящейся точки (в нашем случае, звезды), которое даёт телескоп, тем больше его разрешающая способность.

Разрешающая способность телескопа для видимого света определяется по формуле:

где «D» — это диаметр объектива в миллиметрах, а «α» — угловое разрешение в угловых секундах.

Конечно же, таким образом мы находим разрешающую способность идеального телескопа для идеальных условий наблюдения. В реальности разрешающая способность будет гораздо меньше, так как на качество изображения будут существенно влиять состояние атмосферы и движение воздуха.

Вам конечно же известно, что любой оптический телескоп состоит из объектива и окуляра. Так вот, если в качестве объектива телескопа использовать линзу, то телескоп будет называть рефра́ктором (от латинского слова «преломляю»). Если же в качестве объектива используется вогнутое зеркало, то это телескоп называется рефле́ктором (от латинского «отражаю»).

Помимо рефлекторов и рефракторов в настоящее время широкое применение нашли различные типы зеркально-линзовых телескопов.

У небольших и самых простых телескопов объективом, как правило, выступает двояковыпуклая собирающая линза. Из курса физики вам известно, что если предмет находится за двойным фокусом линзы, то она даёт его уменьшенное, действительное и перевёрнутое изображение. Так как расстояния до небесных тел очень велики, то лучи света, идущие от них, можно считать параллельными. В этом случае изображение небесного объекта будет располагаться в фокальной плоскости объектива.

Из построения видно, что угловых размеров наблюдаемого объекта объектив телескопа не изменяет. Поэтому, чтобы получить увеличенное изображение, мы должны воспользоваться окуляром — ещё одно линзой (собирающей или рассеивающей). При этом фокусное расстояние окуляра должно быть меньше, чем фокусное расстояние объектива. Если расположить окуляр так, чтобы изображение предмета, даваемое объективом телескопа, находилось в его главном фокусе и провести необходимые построения, то мы убедимся, что он увеличивает угловые размеры наблюдаемого объекта. Это увеличение мы можем легко рассчитать, как отношение фокусного расстояния объектива к фокусному расстоянию окуляра.

Конечно же первые телескопы были размером с небольшую подзорную трубу, увеличивали в несколько десятков раз и не отличались высоким качеством изображения. Однако вскоре было обнаружено, что количество света, собираемого объективом телескопа, возрастает пропорционально его площади. Поэтому со временем размеры и мощности этих приборов увеличивались. Так в 1845 году британский астроном Уильям Парсонс построил в своём графском замке телескоп «Левиафан». Масса этого аппарата составляла более 150 тонн, длина трубы — 17 метров, а зеркало имело диаметр 183 сантиметра.

В наше время изготавливаются ещё более крупные оптические телескопы. Так, например, крупнейшим телескопом в Евразии является «Большой телескоп азимутальный» (сокращённо БТА).  Располагается он в научно-исследовательском институте Российской академии наук, расположенном на Северном Кавказе у подножия горы Пастухова в Зеленчукском районе Карачаево-Черкесской Республики. Его главное монолитное зеркало имеет диаметр 605 сантиметров. Этот телескоп считался крупнейшим в мире почти 18 лет.

В настоящее время самым крупным оптическим телескопом считает Большой южноафриканский телескоп, открытый в 2005 году. Находится он в Южноафриканской астрономической обсерватории, расположенной вблизи города Сатерленд в полупустынном регионе Кару Южно-Африканской Республики. Главное зеркало этого телескопа имеет размеры 11 м х 9,8 м и состоит из 91 одинакового шестиугольника со стороной 1 метр.

Примечательно, что изготовлением сегментов главного зеркала и их первичной обработкой занималось приборостроительное предприятие, расположенное в городе Лыткарино Московской области. А калибровка зеркала происходила при участии специалистов Всероссийского научно-исследовательского института метрологии имени Дмитрия Ивановича Менделеева.

Но и это не предел. В 2015 году произошла церемония закладки первого камня будущего Европейского чрезвычайно большого телескопа. Его главным инструментом станет сегментное зеркало диаметром в 39,3 метра.

Конечно же астрономы уже давно не ведут визуальных наблюдений. В середине XIX века им на смену пришла фотография. В настоящее же время фотографию заменили электронные приёмники света. Наибольшее распространение получили полупроводниковые приборы с зарядовой связью, сокращённо ПЗС. Матрицы ПЗС, которые применяются в современных цифровых фотоаппаратах, по своему устройству аналогичны тем, которые используются в астрономии. Важнейшим их качеством является высокая чувствительность: они способны реагировать практически на каждый попавший на них фотон. Особенно ПЗС незаменимы для тех телескопов, которые работают в автоматическом режиме. В частности, это касается знаменитого телескопа «Хаббл», который обращается вокруг земли на расстоянии примерно в 560 километров от её поверхности. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа составляет всего 0,1’’, что почти в 7—10 раз больше, чем у аналогичного телескопа, расположенного на Земле. За 15 лет работы телескопа на Землю было передано свыше 1 миллиона 22 тысяч высококачественных изображений различных космических объектов. В их числе изображения самых далёких галактик, расположенных более чем в 13 миллиардах световых лет.

Сейчас мы называем астрономию всеволновой, так как наблюдения за космическими объектами ведутся во всех диапазонах электромагнитных волн, а не только в его видимой части спектра. Однако лишь радиоволны могут достичь поверхности Земли без значительного поглощения. Поэтому телескопы, предназначенные для изучения остального спектра волн, устанавливаются на орбитальных станциях и космических кораблях.

Для приёма же радиоизлучения от различных космических объектов используются земные радиотелескопы. Антенны радиотелескопов, чаще всего, представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. Но собирают они не свет, а радиоволны. Радиотелескопы принято разделять на телескопы с заполненной и незаполненной апертурой.

Антенны с заполненной апертурой похожи на зеркала оптических телескопов и являются наиболее простыми и привычными в использовании. Самым крупным наземным радиотелескопом с заполненной апертурой является телескоп «Фаст» — «Сферический радиотелескоп с пятисотметровой апертурой», расположенный на юге Китая в провинции Гуйчжоу. Его строительство было завершено 25 сентября 2016 года.

Но возможности радиотелескопов существенно возрастают, если их антенны объединить в одну систему и использовать для изучения одного и того же объекта. Такие антенны получили название антенн с незаполненной апертурой. Например, система, которая состоит из 27) антенн диаметром 25 метров каждая, расположенных в определённом порядке, позволяет достичь углового разрешения в 0,04". А это соответствует возможностям радиотелескопа с антенной, диаметром 35 километров.

Крупнейший наземный радиотелескоп с открытой апертурой — РАТАН-600 — располагается в Специальной астрофизической обсерватории Российской академии наук.

18 июля 2011 года был реализован масштабный международный проект с ведущим российским участием «Радиоастрон». На основе выведенного на околоземную орбиту радиотелескопа «Спектр-Р» (диаметр антенны — 10 метров) и радиотелескопов, расположенных на всех континентах земного шара, создаётся единая наземно-космическая система для изучения различных объектов Вселенной в радиодиапазоне. Двигаясь по вытянутой эллиптической орбите, «Спектр-Р» может удаляться от Земли на расстояние до 350 тысяч километров. Таким образом, создаваемая система по своим возможностям соответствует радиотелескопу с антенной такого колоссального размера.

Реализация проекта «Радиоастрон» позволило начать изучение таких явлений и процессов, как нейтронные звезды и сверхмассивные черные дыры, строение и динамику областей звёздообразования в нашей Галактике, а также проблемы, связанные с эволюцией Вселенной.

0
26210

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт