Меню
Разработки
Разработки  /  Математика  /  Подготовка к ОГЭ  /  9 класс  /  Параболы. ОГЭ задание 23

Параболы. ОГЭ задание 23

Работа состоит из трех модулей: «Алгебра», «Геометрия», «Реальная математика». В модули «Алгебра» и «Геометрия» входит две части, соответствующие проверке на базовом и повышенном уровнях, в модуль «Реальная математика» - одна часть, соответствующая проверке на базовом уровне.

При проверке базовой математической компетентности учащиеся должны продемонстрировать: владение основными алгоритмами, знание и понимание ключевых элементов содержания (математических понятий, их свойств, приемов решения задач и пр.), умение пользоваться математической записью, применять знания к решению математических задач, не сводящихся к прямому применению алгоритма, а также применять математические знания в простейших практических ситуациях.

Части 2 модулей «Алгебра» и «Геометрия» направлены на проверку владения материалом на повышенном уровне. Их назначение - дифференцировать хорошо успевающих школьников по уровням подготовки, выявить наиболее подготовленную часть выпускников, составляющую потенциальный контингент профильных классов.

Эти части содержат задания повышенного уровня сложности из различных разделов курса математики. Все задания требуют записи решений и ответа. Задания расположены по нарастанию трудности - от относительно более простых до сложных, предполагающих свободное владение материалом курса и хороший уровень математической культуры.

24.01.2017

Содержимое разработки

Параболы

1. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра пря­мая имеет с гра­фи­ком ровно одну общую точку.

2. При каком зна­че­нии пря­мая имеет с па­ра­бо­лой ровно одну общую точку? Най­ди­те ко­ор­ди­на­ты этой точки. По­строй­те в одной си­сте­ме ко­ор­ди­нат дан­ную па­ра­бо­лу и пря­мую при най­ден­ном зна­че­нии .

3. При каких от­ри­ца­тель­ных зна­че­ни­ях пря­мая имеет с па­ра­бо­лой ровно одну общую точку? Най­ди­те ко­ор­ди­на­ты этой точки и по­строй­те дан­ные гра­фи­ки в одной си­сте­ме ко­ор­ди­нат.

4. Из­вест­но, что па­ра­бо­ла про­хо­дит через точку    и её вер­ши­на на­хо­дит­ся в на­ча­ле ко­ор­ди­нат. Най­ди­те урав­не­ние этой па­ра­бо­лы и вы­чис­ли­те, в каких точ­ках она пе­ре­се­ка­ет пря­мую  .

5. Па­ра­бо­ла про­хо­дит через точки K(0; –5), L(3; 10), M( –3; –2). Най­ди­те ко­ор­ди­на­ты её вер­ши­ны.

6. При каких зна­че­ни­ях вер­ши­ны па­ра­бол и рас­по­ло­же­ны по раз­ные сто­ро­ны от оси ?

7. При каких зна­че­ни­ях вер­ши­ны па­ра­бол и рас­по­ло­же­ны по раз­ные сто­ро­ны от оси ?

8. При каких зна­че­ни­ях вер­ши­ны па­ра­бол и рас­по­ло­же­ны по одну сто­ро­ну от оси ?

9. При каких зна­че­ни­ях вер­ши­ны па­ра­бол и рас­по­ло­же­ны по одну сто­ро­ну от оси ?

10. Из­вест­но, что гра­фи­ки функ­ций и имеют ровно одну общую точку. Опре­де­ли­те ко­ор­ди­на­ты этой точки. По­строй­те гра­фи­ки за­дан­ных функ­ций в одной си­сте­ме ко­ор­ди­нат.

11. При каком зна­че­нии р пря­мая имеет с па­ра­бо­лой ровно одну общую точку? Най­ди­те ко­ор­ди­на­ты этой точки. По­строй­те в одной си­сте­ме ко­ор­ди­нат дан­ную па­ра­бо­лу и пря­мую при най­ден­ном зна­че­нии

12. При каких по­ло­жи­тель­ных зна­че­ни­ях пря­мая имеет с па­ра­бо­лой ровно одну общую точку? Най­ди­те ко­ор­ди­на­ты этой точки и по­строй­те дан­ные гра­фи­ки в одной си­сте­ме ко­ор­ди­нат.

13. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно две общие точки.

14. По­строй­те гра­фик функ­ции И опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно одну общую точку.

15. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно одну общую точку.

16. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно одну общую точку.

17. Най­ди­те все зна­че­ния k, при каж­дом из ко­то­рых пря­мая y = kx имеет с гра­фи­ком функ­ции y = x2 + 4 ровно одну общую точку. По­строй­те этот гра­фик и все такие пря­мые.

18. По­строй­те гра­фик функ­ции y = 4|x + 2| − x2 − 3x − 2 и опре­де­ли­те, при каких зна­че­ни­ях m пря­мая y = m имеет с гра­фи­ком ровно три общие точки.

19. По­строй­те гра­фик функ­ции

 

и опре­де­ли­те, при каких зна­че­ни­ях m пря­мая y = m имеет с гра­фи­ком одну или две общие точки.

20. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях m пря­мая y = m имеет с гра­фи­ком ровно две общие точки.

21. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая не имеет с гра­фи­ком ни одной общей точки.

22. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно одну общую точку



-80%
Курсы повышения квалификации

Арт-математика - эффективный инструмент эстетического воспитания обучающихся

Продолжительность 16 часов
Документ: Удостоверение о повышении квалификации
2500 руб.
500 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Параболы. ОГЭ задание 23 (112.04 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт