Открытый урок физики в 11 классе
тема: «Свободные электромагнитные колебания. Колебательный контур».
Цели урока: повторить и обобщить знания об электромагнитных колебаниях и волнах.
Задачи:
-стимулировать познавательный интерес учащихся к данной теме и предмету в целом;
-создать условия для практического применения знаний, умений, навыков по изученным темам;
-развивать интерес к изучению окружающего мира через уроки физики;
-развивать самостоятельность мышления, воспитать чувство ответственности, культуру умственного труда.
1. Орг. Момент.
Сегодня мы познакомимся с особенностями распространения электромагнитных волн, отметим этапы создания теории электромагнитного поля и экспериментального подтверждения этой теории, остановимся на некоторых биографических данных.
2. Повторение.
Для осуществления целей урока нам необходимо повторить некоторые вопросы:
Что такое волна, в частности механическая волна? (Распространение колебаний частиц вещества в пространстве)
Какие величины характеризуют волну? (длина волны, скорость волны, период колебаний и частота колебаний)
Какая математическая связь между длиной волны и периодом колебаний? (длина волны равна произведению скорости волны и периода колебаний)
3. Изучение нового материала.
Электромагнитная волна во многом схожа с механической волной, но есть и различия. Основное отличие состоит в том, что для распространения этой волны не нужна среда. Электромагнитная волна - результат распространения переменного электрического поля и переменного магнитного полей в пространстве, т.е. электромагнитного поля.
Электромагнитное поле создается ускоренно движущимися заряженными частицами. Его наличие относительно. Это особый вид материи, является совокупностью переменных электрического и магнитного полей.
Электромагнитная волна - распространение электромагнитного поля в пространстве.
Рассмотрим график распространения электромагнитной волны.
Получить электрические магнитные колебания также легко, как и заставить колебаться математический или пружинный маятники, но наблюдать эти колебания без специальных устройств невозможно.
Какие же величины могут периодически изменятся в электрических цепях?
Опр. 1. Периодические или почти периодические изменения , и напряжения называются электромагнитными колебаниями.
В классической механике - это низкочастотные колебания.
В квантовой механике - это высокочастотные колебания.
Из вывода Максвелла следует, что в природе существует единое электромагнитное поле.
Рис. 2
Опр. 2. Одновременное периодическое изменение связанных между собой электрического и магнитного полей называется электромагнитными колебаниями.
Как механические и электромагнитные колебания могут быть:
- свободными (затухающими)
- вынужденными (незатухающими)
а) Свободные электромагнитные колебания возникают в колебательном контуре после однократного подведения энергии.
Рис. 3
Как всегда в любом разделе физики, мы стараемся изучить протекающие процессы на модели.
Рассмотрим электромагнитные колебания с точки зрения преобразования энергии в колебательном контуре.
Объяснение явления: На обкладках конденсатора сосредоточен электрический заряд, после того как колебательному контуру предоставляется самостоятельность, конденсатор разряжается через катушку индуктивнос-ти, в которой возникает электрический ток. В конденсаторе сосредоточено электрическое поле с энергией W, которая по мере разрядки конденсатора, а в катушке возрастанию тока способствует магнитной энергии W.
Если контур реальный, то потери энергии электромагнитного поля неизбежны, т.к. частично энергия электромагнитного поля переходит во внутреннюю энергию проводников, диэлектрика, а также выделяется в виде джоулевого тепла на активной нагрузке (омическом сопротивлении R). В результате, в реальном контуре возникают свободные электромагнитные колебания, которые являются затухающими.
Вывод: (делают ученики) Свободные колебания, возникающие при разрядке конденсатора через катушку — затухающие электромагнитные колебания.
Демонстрация:
Затухающие электромагнитные колебания на экране осциллографа, где Up – напряжение развертки.
Рис. 4
2. В идеальном колебательном контуре (R=0) возникают свободные электромагнитные колебания , которые являются гармоническими.
В Дайте определение гармоническим колебаниям.
Отв (ученик). Гармонические колебания - это такие колебания, при которых физическая величина изменяется по закону Sin или Cos.
Воспользуемся аналогией между механическими и электромагнитными колебаниями и найдем зависимость от времени для электрических характеристик идеального колебательного контура.
Дополнительная справка (ученик)
Аналогия - один из методов научного познания, который широко применяется при изучении физики. В основе аналогии лежит сравнение. Если обнаруживается, что два или более объектов имеют сходные признаки, то делается вывод и о сходстве других признаков. Вывод по аналогии может быть как истинным, так и ложным, поэтому он требует экспериментальной проверки. (Г. Галилей – основоположник научного метода познания).
Для облегчения изучения электромагнитных колебаний удобно использовать электромеханические аналогии, поскольку теория колебаний имеет универсальный характер, т.е. колебательные и волновые процессы различной природы подчиняются общим закономерностям.
4. Подведем итог: (обобщают ученики)
Колебательные процессы различной природы описываются одинаковыми по виду уравнениями и имеют тождественные графические интерпретации.
Академик Мандельштам отмечал: “Теория колебаний объединяет, обобщает различные области физики... Каждая из областей физики — оптика, механика, акустика — говорит на своем “национальном” языке. Но есть “интернациональный” язык, и это - язык теории колебаний... Изучая одну область, вы получаете тем самым интуицию и знания совсем в другой области”.
Анализ формулы Томсона.
, где - сосредоточенные параметры колебательного контура идеального.
если , то медленно до 0, т.е. период колебаний возрастает.
Если , то медленно до т.к. мешает эдс самоиндукции, хотя , но период колебаний укорачивается.
Чем больше С, тем больше времени необходимо для перезарядки конденсатора.
В реальном колебательном контуре происходят затухающие колебания, которые описываются экспоненциальным законом: .
Рис. 5
t - время релаксации, t - время, за которое амплитуда колебаний в е раз.
- декремент - количественная характеристика быстроты затухания.
(Понятие декремента, времени релаксации и график затухающих колебаний - объясняют ученики)
Вывод: Свободные колебания тока, заряда, напряжения из-за энергических потерь не будут строго гармоническими.
В реальном колебательном контуре при малом R, колебания будут происходить с длительным периодом, а при большом R могут вообще не возникнуть, т.е. конденсатор разрядится через катушку, а перезарядки не последует.
5. Закрепление материала.
Решение задачи у доски
6.Рефлексия.
- Что заинтересовало вас на уроке больше всего?
- Как вы усвоили пройденный материал?
- Какие были трудности? Удалось ли их преодолеть?
-Помог ли сегодняшний урок лучше разобраться в вопросах темы?
- Пригодятся ли вам знания, полученные сегодня на уроке?
7.Домашнее задание.
§§ 18-20, с 53-58