Уравнение, положенное в основу молекулярно-кинетической теории, связывает макроскопические величины, описывающие состояние идеального газа (например, давление) с параметрами его молекул (их массами и скоростями). Это уравнение имеет вид:
\[p=\frac{1}{3} m_0 n\overline{v^2 }\]
Здесь m_0 – масса газовой молекулы, n – концентрация таких частичек в единице объема, \overline{v^2 } – усреднённый квадрат скорости молекул.
Основное уравнение МКТ наглядно объясняет, каким образом идеальный газ создает давление на окружающие его стенки сосуда. Молекулы все время ударяются о стенку, воздействуя на нее с некоторой силой F. Тут следует вспомнить третий закон Ньютона: когда молекула ударяется о предмет, на нее действует сила -F, вследствие чего молекула «отбивается» от стенки. При этом мы считаем соударения молекул со стенкой абсолютно упругими: механическая энергия молекул и стенки полностью сохраняется, не переходя во внутреннюю энергию тел. Это значит, что при соударениях изменяются только скорости молекул, а нагревания молекул и стенки не происходит.
Основное уравнение МКТ
Контрольные работы на заказ
Решаем контрольные по всем предметам. 10 лет опыт! Цена от 100 руб, срок от 1 дня!
Онлайн заказЦены и сроки
Нужно срочно решить задачи?
Решаем задачи любой сложности от 1 дня! Недорого и точно в срок. Заказывай!
Наши услугиБыстрый заказ
Зная, что соударение со стенкой было упругим, мы можем предсказать, как изменится скорость молекулы после столкновения. Модуль скорости останется таким же, как и до соударения, а направление движения изменится на противоположное относительно оси Ох (считаем, что Ох – это та ось, которая перпендикулярна стенке).
Молекул газа очень много, движутся они хаотично и о стенку ударяются часто. Найдя геометрическую сумму сил, с которой каждая молекула воздействует на стенку, мы узнаём силу давления газа. Чтобы усреднить скорости молекул, необходимо использовать статистические методы. Именно поэтому в основном уравнении МКТ используют усредненный квадрат скорости молекул \overline{v^2 }, а не квадрат усредненной скорости \bar{v}^2: усредненная скорость хаотично движущихся молекул равна нулю, и в этом случае никакого давления мы бы не получили.
Теперь ясен физический смысл уравнения: чем больше молекул содержится в объеме, чем они тяжелее и чем быстрее движутся – тем большее давление они создают на стенки сосуда.
Основное уравнение МКТ для модели идеального газа
Следует заметить, что основное уравнение МКТ выводилось для модели идеального газа с соответствующими допущениями:
Соударения молекул с окружающими объектами абсолютно упругие. Для реальных же газов это не совсем так; часть кинетической энергии молекул всё-таки переходит во внутреннюю энергию молекул и стенки.
Силами взаимодействия между молекулами можно пренебречь. Если же реальный газ находится при высоком давлении и сравнительно низкой температуре, эти силы становятся весьма существенными.
Молекулы считаем материальными точками, пренебрегая их размером. Однако размеры молекул реальных газов влияют на расстояние между самими молекулами и стенкой.
И, наконец, основное уравнение МКТ рассматривает однородный газ – а в действительности мы часто имеем дело со смесями газов. Как, например, воздух.
Однако для разреженных газов это уравнение дает очень точные результаты. Кроме того, многие реальные газы в условиях комнатной температуры и при давлении, близком к атмосферному, весьма напоминают по свойствам идеальный газ.
Как известно из законов динамики, кинетическая энергия любого тела или частицы E_k =\frac{mv ^2 }{2} . Заменив произведение массы каждой из частичек и квадрата их скорости в записанном нами уравнении, мы можем представить его в виде:
\[p= \frac{2}{3} nE _k \]
Также кинетическая энергия газовых молекул выражается формулой E_{k} =\frac{3}{2} kT, что нередко используется в задачах. Здесь k – это постоянная Больцмана, устанавливающая связь между температурой и энергией. k=1,38•10-23 Дж/К.
Основное уравнение МКТ лежит в основе термодинамики. Также оно используется на практике в космонавтике, криогенике и нейтронной физике.
Нужно срочно решить задачи?
Решаем задачи любой сложности от 1 дня! Недорого и точно в срок. Заказывай!
Наши услугиБыстрый заказ
Контрольные работы на заказ
Решаем контрольные по всем предметам. 10 лет опыт! Цена от 100 руб, срок от 1 дня!
Онлайн заказЦены и сроки
Примеры решения задач
ПРИМЕР 1
Задание Определить скорость движения частиц воздуха в нормальных условиях.
Решение Используем основное уравнение МКТ, считая воздух однородным газом. Так как воздух на самом деле – это смесь газов, то и решение задачи не будет абсолютно точным.
Пример основного уравнения МКТ
Давление газа:
\[p= \frac{1}{3} m_0 n\overline{v^2 }\]
Можем заметить, что произведение n\cdot m_0 – это плотность газа, так как n – концентрация молекул воздуха (величина, обратная объему), а m – масса молекулы.
Тогда предыдущее уравнение примет вид:
\[p= \frac{1}{3} \rho v ^2 \]
В нормальных условиях давление равно 105 Па, плотность воздуха 1,29кг/м3 – эти данные можно взять из справочной литературы.
Из предыдущего выражения получим скорость молекул воздуха:
\[ v= \sqrt{\frac{3p }{\rho } } =\sqrt{\frac{3\cdot 10^5 }{1,29} }= 483 m/c \]
Ответ v=483 м/с
ПРИМЕР 2
Задание Определить концентрацию молекул однородного газа при температуре 300 К и давлении 1 МПа. Газ считать идеальным.
Решение Решение задачи начнём с основного уравнения МКТ: p=\frac{1}{3} m_0 n\overline{v^2 }. Кинетическая энергия молекул, как и любых материальных частичек: E_{k} =\frac{mv ^2 }{2}. Тогда наша расчетная формула примет несколько другой вид:
\[p= \frac{2}{3} nE_{k} \]
Однако кинетическая энергия молекул в термодинамике определяется и с помощью другого выражения, и напрямую связана с температурой газа:
\[E_{k} =\frac{3}{2} kT \]
Подставив эту формулу в предыдущее выражение, получим еще одну форму записи основного уравнения МКТ:
\[p=nkT\]
Выразим и рассчитаем концентрацию молекул газа:
\[ n=\frac{p}{kT} =\frac{10^6 }{1,38\cdot 10^{-23} \cdot 300} = 2,42\cdot10^{17} m^{-3} \]
Ответ n=2,42\cdot10^{17} молекул/м ^{3}