Меню
Разработки
Разработки  /  Математика  /  Уроки  /  9 класс  /  Методическая разработка урока по теме «Целое уравнение и его корни»

Методическая разработка урока по теме «Целое уравнение и его корни»

Цель урока: Обобщить и систематизировать знания о целых уравнениях и методах их решений.

15.12.2016

Содержимое разработки

Алгебра. 9 класс

Методическая разработка урока

по теме «Целое уравнение и его корни»

Цель урока: Обобщить и систематизировать знания о целых уравнениях и методах их решений.

Задачи урока:

1.      Образовательные: закрепить, систематизировать знания, умения и навыки решения целых уравнений аналитическим и графическим способами ; актуализировать опорные знания решения квадратных
уравнений, построения графиков функций,

2.      Развивающие: развивать умения в применении знаний в конкретной ситуации; логическое мышление, умение работать в проблемной ситуации; умение обобщать, конкретизировать, правильно излагать мысли; развивать самостоятельную деятельность учащихся.

3.      Воспитательные: воспитывать интерес к предмету через содержание учебного материала; умение работать в коллективе, взаимопомощь, культуру общения, умение применять преемственность в изучении отдельных тем; воспитывать настойчивость в достижении цели, умение не растеряться в проблемных ситуациях


Оборудование: Мультимедийный проектор, компьютер, экран

Ход урока

  1. Орг. Момент

(Вводно-мотивационная часть, сцелью активизации деятельности учащихся)

Учитель: Ребята что вы видите на экране?.(Уравнения)..А что с уравнениями обычно делают? (решают). А что значит решить уравнение?... И последний вопрос: Что называется корнем уравнения? …. Молодцы! Ребята, посмотрите, пожалуйста на экран! Данные уравнения отличаются друг от друга?


  1. Учитель:. А теперь, прочитаете задание на слайде

Ребята давайте устно решим данные уравнения. Внимание на экран.

Учитель: А теперь, ребята, попробуем указать из рациональных уравнений те которые не являются целыми.

Ученики: Называют целые и дробно-рациональные уравнения.

Учитель: Давайте сформулируем определение целого уравнения…

Ученики: Если левая и правая части представляют собой целые выражения, то это уравнение называется целым.

Учитель: И так тема нашего урока: “Целое уравнение и его корни” Сегодня мы познакомимся с целыми уравнениями, узнаем как определить степень уравнения, рассмотрим способы решения целых уравнений. Откройте тетради. Запишите дату и тему урока

III. Изучение нового материала

Учитель: Ребята в начале урока мы с вами решали устно уравнения. Давайте вновь вернёмся к ним и укажем степени этих уравнений. А степенью целого уравнения называется степень равносильного ему уравнения вида Р(х) = 0, где Р(х) – многочлен стандартного вида. А что называется степенью многочлена?...

Ученики: Наибольший показатель степени переменной входящей в уравнение называется степенью уравнения.

Учитель: Ребята, а какова степень знакомых нам уравнений? ………

Учитель: А кто помнит, какова цель нашего урока?

Ученики: Научится решать целые уравнения

Учитель: Совершенно верно! И так, начнём решать целые уравнения. Откройте учебник и найдите № 205 (а, б, в). Посмотрите на данные уравнения! Чем они отличаются?.... Как вы думаете, с чего можно начать решение каждого из этих уравнений?... Запишите в тетрадь решении уравнения, ребята сидящие на 1 ряду (1 вариант) – под буквой «а», на втором ряду ( 2 вариант) – под буквой «б», и ребята сидящие на 3 ряду ( 3 вариант) – под буквой «в».

Учитель: Кто справился с заданием? Кто решил своё уравнение, приступайте к решению любого из оставшихся уравнения. А для тех у кого возникли вопросы воспроизведём решение на доске. Кто сможет записать решение на доске? Пожалуйста, выходите!..... Первым справился …..Прокомментируй свое решение и т.д.

а)(6 – х)(х+6) – (х–11)х=36, б) = 0, в) 2=1,

36 – х2 – х2 + 11х – 36=0, = 0, 36х2–(36х2 –33х+96–88)– 4=0

2 + 11х = 0, т.к. 55 ≠ 0, 36х2–36х2 +33х–96х+88 – 4=0

х (11 – 2х) = 0, 5 – 15у -33 + 11у = 0, – 63х = – 84,

х1 = 0 и 2х2 = 11, -4у = 28, х= = 1

х2 = 5,5 у = –7

Ответ: 0; 5,5 Ответ: – 7 Ответ: 1.

Учитель: Ребята? У кого аналогичное решение, поднимите руку!... Молодцы! Все решили данные равнения .

Учитель: Уравнения ребята бывают 1, 2, 3, 4, и более высоких степеней. Мы с вами большей частью решаем уравнение I, II иногда III степени. Давайте решим уравнение I степени и узнаем, сколько оно может иметь корней. Кто знает, называет вслух решения уравнения…..

(На слайде):  2x-5=10, 0·х = 7

Учитель: Решили? Сделайте вывод … Сколько корней может иметь уравнение I степени?

Ученики: Не более одного.

Учитель: Рассмотрим уравнения на следующем слайде . Запишите в тетрадях решение: 1 ряд – 1 вариант, 2 ряд – 2 вариант, 3 ряд – 3 вариант. ….

(На слайде)

I вариант

II вариант

III вариант

x2-5x+6=0

y2-4y+7=0

x2-12x+36=0

Д=1, Д0

Д=-12, Д

Д=0, 1 корень

x1=2, x2=3

нет корней

x=6

Учитель: Проверим … А теперь хором ответьте на вопрос: Сколько корней может иметь каждое уравнение II степени?

Ученики: Не более двух.

Учитель:.Выясните: сколько корней может иметь уравнение III степени?

1 ряд – 1 вариант, 2 ряд – 2 вариант, 3 ряд – 3 вариант


(На слайде)

I вариант

II вариант

III вариант

x3-1=0

x3-4x=0

x3-12x2+36x=0

x3=1

x(x2-4)=0

x(x2-12x+36)=0

x=1

x=0, x=2, x= -2

x=0, x=6

1 корень

3 корня

2 корня

А теперь проверим. ..Кто запишет на доске решение своего уравнения? …..Итак, сколько корней может иметь уравнение III степени?

Ученики: Не более трёх.

Учитель: Существуют также и уравнения более высоких степеней. Это уравнения 4 степени, 5 степени. А сколько они могут иметь корней? Для решения уравнений 4, 5 и более степеней существуют специальные методы. Если будете учиться в профильном классе, то конечно научитесь решать некоторые из них. Мы с вами сегодня решали уравнения аналитическим способом, но существует не только этот способ. Прежде чем с ним познакомится, вспомним известные нам функции и их графики! Из списка функций приведенного на доске выберите функцию, соответствующую данному графику. Запишите в тетради данные соответствия

Внимание на экран




















Функции записаны на доске:

А у = – х +3 Г у = (х + 2) 2 + 5 Ж у = х 2+1

Б у = х3+3 Д у =х З у = - х 2 + 4

В у = (х – 2) 2 Е у = х 2– 2 И у =

А

теперь рассмотрим решение уравнения x3+x-4=0. А сколько корней оно может иметь?

(Ученики отвечают):

Запишем это уравнение в виде x3=-x+4. А теперь рассмотрим функции y=x3 и y=-x+4. Что является графиками данных функций?

Ученики: Кубическая парабола и прямая.

У

читель: Это уравнение можно решить графически. Давайте откроем учебник (Алгебра 9 класс), стр.58. На рисунке 43 нам представлены графики данных функций. Вы видите, ребята, что графики имеют точку пересечения. Попробуйте назвать корень данного уравнения.


Ученики: называют: 1,3

Учитель: Как вы думаете, в чём недостаток данного метода решения?

Ученики: Он не точен.

Учитель: Да, графический способ решения уравнений не всегда обеспечивает высокую точность результата, и поэтому иногда п

риходится этот результат уточнять при помощи вычислений. Итак, ребята, данное уравнение имеет 1 решение, какое?.....

А если бы подобное уравнение имело бы 2 решения, то, как бы могла прямая располагаться по отношению к кубической параболе.

(Идёт создание проблемной ситуации). 


А если три решения?


IV. Закрепление.

А сейчас рассмотрим пример решения уравнения графическим способом

Чтобы решить уравнение х2 + 2х – 8 =0

представим его в виде х2 = – 2х +8,

Далее рассмотрим функции

у = х2 и у = – 2х +8.

Что является графиком каждой функции?

Построим графики этих функций в одной

системе координат. Определим абсциссы

точек пересечения, они будут являться

корнями нашего уравнения

Ответ: – 4 ; 2.

V

. Итог урока.

Учитель: А теперь давайте, ребята обобщим то, о чём мы говорили.

- Какие уравнения мы сегодня решали?

- Какой степени они были?

- Вспомните методы решения уравнений!

- Перечислите: сколько корней может иметь целое выражение____ степени?

В конце урока задание на рефлексию

А сейчас поставьте в тетради сами себе оценку за работу на уроке.

Выставление оценок учителем. Домашнее задание.


6



-80%
Курсы повышения квалификации

Проектная деятельность учащихся

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Методическая разработка урока по теме «Целое уравнение и его корни» (9.57 MB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт