42
ТЕХНОЛОГИЯ РЕШЕНИЯ РАЦИОНАЛИЗАТОРСКИХ
И ИЗОБРЕТАТЕЛЬСКИХ ЗАДАЧ
Содержание
Введение
Глава 1 Важнейшие положения функционально – стоимостного анализа.
Принципы и сущность ФАСа.
Алгоритм решения изобретательских задач
Анализ задачи
Анализ модели задачи
Определение ИКР и ФП
Мобилизация и применение ВПР
Применение информфонда
Изменение или замена задачи
Анализ способа устранения физического противоречия
Применение полученного ответа
Анализ хода решения
Приложения
Список литературы
Глава 1
ВАЖНЕЙШИЕ ПОЛОЖЕНИЯ ФСА
1.1 ПРИНЦИПЫ ФСА.
Функциональный принцип. Любое устройство (машина, прибор, аппарат и т. д.) понимается и совершенствуется не в конкретной реальной форме, а как комплекс функций, которые оно выполняет или должно выполнять.
Системный принцип. Любой объект необходимо представлять в трёх аспектах: как нечто целое (систему С), как часть более общей системы (надсистемы) и как совокупность более мелких частей (элементов, подсистем ПС1, ПС2, ПС3 и т. д.). При этом в надсистеме следует принять во внимание и все её составные части (системы С, C, C и т. д.) так или иначе связанные с данной системой С. Т. е. каждому объекту сопоставляется такой условный рисунок.
НАДСИСТЕМА












С
С C C
C(n)











ПС11
ПС2
ПС3
ПСN
ПС3
Если рассматриваемый объект изменяется со временем, то целесообразно представить этот объект, надсистему (в которую он входит) и его подсистемы не только в настоящем, но и в прошлом и будущем.
Стоимостный принцип. При разработке новой технической системы и при совершенствовании уже имеющейся необходимо обеспечить минимум затрат на производство и эксплуатацию системы, приходящихся на единицу её полезности.
ПОНЯТИЕ ФУНКЦИИ. ПРАВИЛА ФОРМУЛИРОВАНИЯ ФУНКЦИИ.
Любое изделие (в т. ч. машина, аппарат, прибор и т. п.) имеет потребительную стоимость.
Потребительная стоимость – это способность изделия удовлетворять ту или иную потребность человека, быть полезностью, благом.
Вне отношения к потребностям людей потребительной стоимости не существует.
Для потребителя не важна природа изделия как такового. Его прежде всего интересуют те действия, та работа, которые при помощи изделия могут быть выполнены, т. е. функциональные возможности, функции изделия.
Функция – это проявление изделием его свойств, а также действия, производимые с помощью изделия.
При формулировании функции необходимо придерживаться двух правил.
Формулировка должна состоять по возможности из двух слов: переходного глагола и существительного. (Переходным называется глагол, который требует после себя существительное в винительном падеже.) Примеры: функция провода – проводить ток; функции контакта – проводить ток, крепить провод. При невозможности сформулировать функцию в виде двух слов используют языковые конструкции, эквивалентные такой формулировке.
Формулировка функции должна быть абстрактной, т. е. она не должна быть жёстко зависимой от того или иного варианта реализации функции. Так, вместо «разрезать», «распиливать», «разрубать», «раскалывать», «разламывать» и т. д. надо говорить «разъединять», «разделять».
ФУНКЦИЯ ИЗДЕЛИЯ И ЕГО КОНСТРУКЦИЯ. СУЩНОСТЬ ФУНКЦИОНАЛЬНОГО ПОДХОДА
Функция изделия и его конструкция взаимосвязаны и обусловливают друг друга. Функция определяет сущность, основной смысл существования изделия. Конструкция же представляет собой материальный объект, реализующий эту сущность. В известном смысле функция и конструкция мыслятся как содержание и форма; определяющим, первичным в системе функция - конструкция является функция, а определяемым, вторичным - конструкция. Методологический подход, основанный на использовании изложенного принципа о первичности функции и вторичности конструкции, о необходимости выведения конструкции из условий оптимальной реализации функции изделия, образует т. н. функциональный подход.
В ФСА такой подход противопоставляется традиционному предметному подходу, при котором анализ и совершенствование изделия сводятся к анализу и совершенствованию элементов его конструкции, а функции, выполняемые изделием, либо не рассматриваются, либо рассматриваются косвенно, неявно, во всяком случае принцип, при котором конструкция выводится из функции как обязательность, как система, не реализуется.
ИЕРАРХИЯ ФУНКЦИЙ
Функции изделия, которые определяют связь между изделием в целом и потребителем (или системой более высокого порядка) называются внешними.
Внешние функции подразделяют на главную (главные) и второстепенные.
Главная функция изделия определяет его назначение, сущность, смысл существования, т. е. определяет основную цель изготовляемого изделия, его основную потребительную стоимость.
Второстепенные функции не влияют на работоспособность изделия. Они отражают побочные цели (побочные потребительные стоимости). Это, как правило, эстетические, экологические, эргономические, технологические функции.
Функции, совокупное выполнение которых реализует главную функцию, называются внутренними.
Различают основные и вспомогательные внутренние функции.
Основные функции – это функции, которые определяют работоспособность изделия.
Вспомогательные функции способствуют реализации основных. Это, как правило, соединительные, фиксирующие, изолирующие, направляющие функции, а также функции, обеспечивающие долговечность, надёжность, точность.
Совокупность основных функций (номенклатура и количество) определяется принятым с целью реализации внешней функции принципом действия.
Совокупность вспомогательных функций определяется условиями реализации основных функций и зависит от принятого конструктивного исполнения изделия.
Основные и вспомогательные функции являются полезными в том смысле, что невыполнение хотя бы одной основной или одной вспомогательной функции приводит к потере работоспособности изделия. Однако, между основными и вспомогательными функциями есть принципиальное различие, состоящее в том, что необходимость во вспомогательных функциях возникает только при фактической реализации соответствующих основных функций.
Реализация каждой основной функции как функции полезной сопровождается побочными, как правило, вредными функциями. Поэтому по степени полезности различают функции полезные и вредные. Первые обеспечивают рабооспособность изделия, вторые – уменьшают её и вдобавок увеличивают затраты.
Вредные функции принципиально неустранимы, поэтому речь может идти только об экономически обоснованном уменьшении их вредного действия.
Используют также понятия «бесполезные», «избыточные», «излишние» функции. Это функции, которые не изменяют работоспособность изделия, но приводят к увеличению затрат. Бесполезные функции могут также выражаться в виде избыточного ресурса.
Материальный носитель функции – это отдельный конструктивный элемент (или их совокупность), реализующий функцию.
ФУНКЦИОНИРОВАНИЕ ТЕХНИЧЕСКОЙ СИСТЕМЫ КАК ПРОЦЕСС ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ, ВЕЩЕСТВА, ИНФОРМАЦИИ
Все технческие системы могут рассматриваться как устройства, основным свойством которых является наличие в них организованных потоков энергии, вещества, информации. Считается, что в реальном мире существует только 3 вида «продуктов»: энергия, вещество, информация. Это означает, что работа, функционирование любого устройства (машины, прибора, аппарата и т. п.) есть не что иное, как преобразование энергии, вещества, информации. В этом свете любая основная внутренняя функция может быть сведена к совокупности действий с энергией, веществом, информацией.
Действие с «продуктом» - это процесс, в результате которого некоторый исходный «продукт», образующий вход, преобразуется в конечный, образующий выход. В результате преобразования, вообще говоря, изменяются характеристики энергии, вещества, информации.
Действию с «продуктом» можно сопоставить такой условный нрисунок.
ПРОЦЕССОР

ВХОД ВЫХОД
«ПРОДУКТА» «ПРОДУКТА»
(Входов и выходов «продукта» может быть и несколько).
Если «продукт» на выходе имеет такие же качественные и количественные показатели, что и на входе, то выполняется хранение «продукта». Если же область локализации «продукта» на выходе не совпадает с областью локализации «продукта» на входе, то выполняется передача «продукта».
Если при преобразовании изменяется качество «продукта», то имеет место качественное преобразование. Если же изменяется количественная характеристика «продукта», преобразование является количественным.
МОДЕЛИ, РАССМАТРИВАЕМЫЕ В ФСА.
Структурно-элементная модель технической системы (ТС). Это абстрактный (условный) рисунок, показывающий взаимосвязь (соподчинённость) элементов ТС. Эта модель изображается в виде схем, матриц, графов и т. д. В них отражается иерархия элементов (система, подсистема, узел, деталь, элемент детали, материал).
Функциональная модель ТС. Это абстрактный (условный) рисунок, показывающий взаимосвязь (соподчинённость) выполняемых ТС функций. Эта модель изображается в виде схем, матриц, графов и т. д. Функциональная модель строится для того, чтобы выделить все функции ТС, имея в виду, что реализовать их выполнение можно многими путями.
Функционально-структурная модель. Это таблица, показывающая взаимосвязь функций ТС и элементов её конструкции.
ОПРЕДЕЛЕНИЕ ЗАТРАТ НА ФУНКЦИИ.
Функциональный принцип связан с представлением об изделии при помощи его функциональной модели и с положением о том, что конструкция изделия должна быть получена из условий оптимальной реализации его функций. Оценка такой оптимальности может быть проведена только в терминах затрат. Поэтому анализ функций должен быть дополнен анализом затрат, связанных с изготовлением и эксплуатацией изделий.
Анализ затрат базируется на том, что затраты, связаннае с созданием и использованием любого устройства, состоят из минимума, абсолютно необходимого для его изготовления и эксплуатации, и дополнительных, функционально неоправданных, излишних издержек, которые не имеют прямого отношения к назначению объекта и связаны с несовершенством конструкции, технологических процессов, применяемых материалов и методов организации производства и труда. Цель стоимостного анализа – недопущение излишних затрат в разрабатываемом устройстве, а в модернизируемом устройстве – выявление излишних затрат и нахождение путей их ликвидации и сокращения.
В ФСА предполагается, что затраты на функции определяются всеми видами затрат, связанных с материальным носителем функции: на его разработку, изготовление, эксплуатацию и т. д. Используются понятия «производственные затраты» и «эксплуатационные затраты» на функции. Это затраты, связанные соответственно с изготовлением носителя функции и применением этого носителя в сфере потребления. Используется понятие «совокупные затраты жизненного цикла». Это производственные и эксплуатационные затраты в течение нормативного срока окупаемости.
В ФСА любое устройство рассматривается как организованное множество функций. Каждой внешней функции соответствует своя совокупность внутренних. Поэтому плата за внешнюю функцию может рассматриваться как плата за совокупность внутренних функций. Поскольку внутренние функции есть основные, вспомогательные и вредные, то
З = + + ,
где
Зi – затраты на i-ю основную функцию,
Зn – затраты на n-ю вспомогательную функцию, связанную с i-й основной функцией,
Зik - затраты на k-ю вредную функцию, связанную с i-й основной функцией.
Основная цель ФСА формулируется как оптимизация соотношения между полезностью и совокупными затратами жизненного цикла. Математически эта цель может быть выражена соотношением:
min , (1)
где безразмерное число П – полезность.
Область поиска оптимального варианта на основе минимизации функции З/П ограничено условиями соблюдения различных требований (потребителя, технологических, механической жёсткости, надёжности и т. д.). Эти условия представляют при помощи системы нелинейных ограничений-неравенств
J LJ , j=1,2,3… . (2)
Изделие, удовлетворяющее условиям (1), (2) называется оптимальным и характеризуется минимально возможными затратами жизненного цикла Зmin, которые определяются как функцонально необходимые затраты.
Важнейшим положением системного принципа является положение о том, что оптимизация подсистемы должна быть подчинена условиям оптимальости системы, в которую входит данная подсистема. При этом в оптимальной системе подсистемы получаются, как правило, неоптимальными. И наоборот: система, состоящая из одних оптимальных подсистем, как правило, неоптимальна.
1.2 АЛГОРИТМ РЕШЕНИЯ ИЗОБРЕТАТЕЛЬСКИХ ЗАДАЧ АРИЗ-85-В.ЧТО ТАКОЕ АРИЗ?
Алгоритм решения изобретательских задач (АРИЗ) - комплексная программа алгоритмического типа, основанная на законах развития технических систем и предназначенная для анализа и решения изобретательских задач. АРИЗ возник и развивался вместе с Теорией Решения Изобретательских Задач (ТРИЗ). Первоначально АРИЗ назывался "методикой изобретательского творчества".
Впервые словосочетание "алгоритм решения изобретательских задач" использовано в приложении "Технико-экономические знания" к еженедельнику "Экономическая газета" за 1 сентября 1965 г. Аббревиатура АРИЗ впервые использована в книге Г.С. Альтшуллера "Алгоритм изобретения", Московский рабочий, 1-е изд.: 1969, 2-е изд.: 1973. В дальнейшем модификации АРИЗ включали указание на год публикации, например АРИЗ-68, АРИЗ-71...
Автор АРИЗ - Г.С. Альтшуллер. При разработке последних модификаций алгоритма (АРИЗ-77, АРИЗ-82, АРИЗ-85) учтены замечания и рекомендации многих специалистов по ТРИЗ.
1.2.1 АНАЛИЗ ЗАДАЧИ
Основная цель первой части АРИЗ - переход от расплывчатой изобретательской ситуации к четко построенной и предельно простой схеме (модели) задачи.
ШАГ 1.1. Записать условия мини-задачи (без специальных терминов) по следующей форме:
Техническая система для (указать назначение) включает (перечислить основные части системы). Техническое противоречие 1 (ТП-1): (указать). Техническое противоречие 2 (ТП-2): (указать). Необходимо при минимальных изменениях в системе (указать результат, который должен быть получен).
ПРИМЕР
Техническая система для приема радиоволн включает антенну радиотелескопа, радиоволны, молниеотводы, молнии. ТП-1: если молниеотводов много, они надежно защищают антенну от молний, но поглощают радиоволны. ТП-2: если молниеотводов мало, то заметного поглощения радиоволн нет, но антенна не защищена от молний. Необходимо при минимальных изменениях обеспечить защиту антенны от молний без поглощения радиоволн. (В этой формулировке следует заменить термин "молниеотвод" словами "проводящий стержень", "проводящий столб" или просто "проводник").
Примечания.
Переход от ситуации к мини-задаче не означает, что взят курс на решение
1. Мини-задачу получают из изобретательской ситуации, вводя ограничения: все остается без изменений или упрощается, но при этом появляется требуемое действие (свойство), или исчезает вредное действие (свойство) Переход от ситуации к мини-задаче не означает, что взят курс на решение небольшой задачи. Наоборот, введение дополнительных требований (результат должен быть получен "без ничего") ориентирует на обострение конфликта и заранее отрезает пути к компромиссным решениям.
2. При записи 1.1 следует указать не только технические части системы, но и природные, взаимодействующие с техническими. В задаче о защите антенны радиотелескопа такими природными частями системы являются молнии и принимаемые радиоволны (если они излучаются природными космическими объектами).
3. Техническими противоречиями (ТП) называют взаимодействия в системе, состоящие, например, в том, что полезное действие вызывает одновременно и вредное. Или – введение (усиление) полезного действия либо устранение (ослабление) вредного действия вызывает ухудшение (в частности, недопустимое усложнение) одной из частей системы или всей системы в целом.
Технические противоречия составляют, записывая одно состояние элемента системы с объяснением того, что при этом хорошо, а что - плохо. Затем записывают противоположное состояние этого же элемента, и вновь - что хорошо, что плохо.
Иногда в условиях задачи дано только изделие; технической системы (инструмента) нет, поэтому нет явного ТП. В этих случаях ТП получают, условно рассматривая два состояния (изделия), хотя одно из них заведомо недопустимо.
НАПРИМЕР, дана задача: "Как наблюдать невооруженным глазом микрочастицы, взвешенные в образце оптически чистой жидкости, если эти частицы настолько малы, что свет обтекает их?"
ТП-1: Если частицы малы, жидкость остается оптически чистой, но частицы невозможно наблюдать невооруженным глазом.
ТП-2: Если частицы большие, они хорошо наблюдаемы, но жидкость перестает быть оптически чистой, а это недопустимо.
Условия задачи, казалось бы, заведомо исключают рассмотрение ТП-2: изделие менять нельзя! Действительно, в дальнейшем мы будем исходить (в данном случае) из ТП-1, но ТП-2 даст дополнительные требования к изделию: маленькие частицы, оставаясь маленькими, должны стать большими...
4. Термины, относящиеся к инструменту и внешней среде, необходимо заменять простыми словами для снятия психологической инерции. И это потому, что термины:
Навязывают старые представления о технологии работы инструмента: "ледокол колет лед" - хотя можно продвигаться сквозь льды, не раскалывая их;
затушевывают особенности веществ, упоминаемых в задаче: "опалубка" это не просто "стенка", а "железная стенка";
сужают представления о возможных состояниях вещества: термин "краска" тянет к традиционному представлению о жидкой или твердой краске, хотя краска может быть и газообразной.
ШАГ 1.2. Выделить и записать конфликтующую пару элементов: изделие и инструмент.
Правило 1. Если инструмент по условиям задачи может иметь два состояния, надо указать оба состояния.
Правило 2. Если в задаче есть пары однородных взаимодействующих элементов, достаточно взять одну пару.
ПРИМЕР
Изделия - молния и радиоволны. Инструмент – проводящие стержни (много стержней, мало стержней).
Примечания
5. Изделием называют элемент, который по условиям задачи надо обработать (изготовить, переместить, изменить, улучшить, защитить от вредного действия, обнаружить, измерить и т. д.). В задачах на обнаружение и изменение изделием может оказаться элемент, являющийся по своей основной функции собственно инструментом, например шлифовальный круг.
6. Инструментом называют элемент, с которым непосредственно взаимодействует изделие (фреза, а не станок; огонь, а не горелка). Инструментом являются стандартные детали, из которых собирают изделие. Например, набор частей игры "Конструктор" - это инструмент для изготовления различных моделей.
7. Один из элементов конфликтующей пары может быть сдвоенным. Например, даны два разных инструмента, которые должны одновременно действовать на изделие, причем один инструмент мешает другому. Или даны два изделия, которые должны воспринимать действия одного и того же инструмента: одно изделие мешает другому.
ШАГ 1.3. Составить графические схемы ТП-1 и ТП-2, используя таблицу 1.
ПРИМЕР
Т
П-1: много проводящих стержней ТП-2: мало проводящих стержней
Примечания
8. В таблице 1 приведены схемы типичных конфликтов. Допустимо использование нетабличных схем, если они лучше отражают сущность конфликта.
9. В некоторых задачах встречаются многозвенные схемы конфликтов, например:
Такие схемы сводятся к однозвенным:
если считать Б изменяемым изделием или перенести на Б основное свойство (или состояние) А.
10. Конфликт можно рассматривать не только в пространстве, но и во времени.
Так, в задаче об опылении цветов сильный ветер вначале закрывает лепестки, из-за чего затем не переносит пыльцу, хотя это он может делать хорошо. Такой подход позволяет иногда четче выделить задачу, которую надо решать.
11. Шаги 1.2 и 1.3 уточняют общую формулировку задачи. Поэтому после шага 1.3 необходимо вернуться к 1.1 и проверить, нет ли несоответствий в линии 1.1 - 1.2 - 1.3. Если несоответствия есть, их надо устранить, откорректировать линию.
ШАГ 1.4. Выбрать из двух схем конфликта (ТП-1 и ТП-2) ту, которая обеспечивает наилучшее осуществление главного производственного процесса (основной функции технической системы, указанной в условиях задачи). Указать, что является главным производственным процессом.
ПРИМЕР
В задаче о защите антенны радиотелескопа главная функция системы - прием радиоволн. Поэтому выбрать следует ТП-2: в этом случае проводящие стержни не вредят радиоволнам.
Примечания
12. Выбирая одну из двух схем конфликта, мы выбираем и одно из двух противоположных состояний инструмента. Дальнейшее решение должно быть привязано именно к этому состоянию. Нельзя, например, подменять "малое количество проводников" каким-то "оптимальным количеством". АРИЗ требует обострения, а не сглаживания конфликта.
"Вцепившись" в одно состояние инструмента, мы в дальнейшем должны добиться, чтобы при этом состоянии появилось положительное свойство, присущее другому состоянию. Проводников мало, и увеличивать их число мы не будем, но в результате решения молнии должны отводиться так, словно проводников очень много.
13. С определением главного производственного процесса (ГПП) иногда возникают трудности в задачах на измерение. Измерение почти всегда производят ради изменения, т. е. обработки детали, выпуска продукции. Поэтому ГПП в измерительных задачах - это ГПП всей системы, а не измерительной ее части. Например, необходимо измерять давление внутри выпускаемых электроламп. ГПП - не измерение давления, а выпуск ламп. Исключением являются только некоторые задачи на измерение в научных целях.
ШАГ 1.5. Усилить конфликт, указав предельное состояние (действие) элементов.
Правило 3. Большая часть задач содержит конфликты типа "много элементов" и "мало элементов" ("сильный элемент" - "слабый элемент" и т. д.). Конфликты типа "мало элементов" при усилении надо приводить к одному виду - "ноль элементов" ("отсутствующий элемент").
ПРИМЕР
Будем считать, что вместо "малого количества проводников" в ТП-2 указан "отсутствующий проводник".
ШАГ 1.6. Записать формулировку модели задачи, указав:
конфликтующую пару;
усиленную формулировку конфликта;
что должен сделать вводимый для решения задачи икс-элемент (что он должен сохранить и что должен устранить, улучшить, обеспечить и т.д.).
ПРИМЕР
Даны отсутствующий проводник и молния. Отсутствующий проводник не создает помех (при приеме радиоволн антенной), но и не обеспечивает защиту от молний. Необходимо найти такой икс-элемент, который, сохраняя способность отсутствующего проводника не создавать помех (антенне), обеспечивал бы защиту от молний.
П
римечания
14. Модель задачи условна, в ней искусственно выделена часть элементов технической системы. Наличие остальных элементов только подразумевается. Так, в модели задачи о защите антенны из четырех элементов, необходимых для формулировки задачи (антенна, радиоволны, проводник и молния), остались только два, остальные упоминаются в скобках - их можно было бы вообще не упоминать.
15. После шага 1.6 следует обязательно вернуться к 1.1 и проверить логику построения модели задачи. При этом часто оказывается возможным уточнить выбранную схему конфликта, указав в ней Х-элемент, например, так:
16. Икс-элемент не обязательно должен оказаться какой-то новой вещественной частью системы. Икс-элемент - это некое изменение в системе, некий икс вообще. Он может быть равен, например, изменению температуры или агрегатного состояния какой-то части системы или внешней среды.
ШАГ 1.7. Проверить возможность применения системы стандартов к решению модели задачи. Если задача не решена, перейти ко второй части АРИЗ. Если задача решена, можно перейти к седьмой части АРИЗ, хотя и в этом случае рекомендуется продолжить анализ со второй части.
Примечание
17. Анализ по первой части АРИЗ и построение модели существенно проясняют задачу и во многих случаях позволяют увидеть стандартные черты в нестандартных задачах. Это открывает возможность более эффективного использования стандартов, чем при применении их в исходной формулировке задачи.
1.2.2 АНАЛИЗ МОДЕЛИ ЗАДАЧИ
Цель второй части АРИЗ - учет имеющихся ресурсов, которые можно использовать при решении задачи: ресурсов пространств, времени, веществ и полей.
ШАГ 2.1. Определить оперативную зону (ОЗ).
Примечание
18. В простейшем случае оперативная зона - это пространство, в пределах которого возникает конфликт, указанный в модели задачи.
ПРИМЕР
В задаче об антенне ОЗ - пространство, ранее занимаемое молниеотводом, т.е. мысленно выделенный "пустой" стержень, "пустой" столб.
ШАГ 2.2. Определить оперативное время (ОВ).
Примечание
19. Оперативное время - это имеющиеся ресурсы времени: конфликтное время Т1 и время до конфликта Т2. Конфликт (особенно быстротечный, кратковременный) иногда может быть устранен (предотвращен) в течение Т2.
ПРИМЕР
В задаче об антенне оперативное время является суммой Т1 (время разряда молнии) и Т1 (время до следующего разряда). Т2 нет.
ШАГ 2.3. Определить вещественно-полевые ресурсы (ВПР) рассматриваемой системы, внешней среды и изделия. Составить список ВПР.
Примечания
20. Вещественно-полевые ресурсы - это вещества и поля, которые уже имеются или могут быть легко получены по условиям задачи. ВПР бывают трех видов:
Внутрисистемные
а) ВПР инструмента;
б) ВПР изделия.
Внешнесистемные
а) ВПР среды, специфической именно для данной задачи, например вода в задаче о частицах в жидкости оптической чистоты;
б) ВПР, общие для любой внешней среды, "фоновые" поля, например гравитационные, магнитное поле Земли.
Надсистемные
а) отходы посторонней системы (если такая система доступна по условию задачи),
б) "копеечные" - очень дешевые посторонние элементы, стоимостью которых можно пренебречь.
При решении конкретной мини-задачи желательно получить результат при минимальном расходовании ВПР. Поэтому целесообразно использовать в первую очередь внутрисистемные ВПР, затем внешнесистемные ВПР и в последнюю очередь надсистемные ВПР. При развитии же полученного ответа и при решении задач на прогнозирование (т. е. макси-задач) целесообразно задействовать максимум различных ВПР.
21. Как известно, изделие - неизменяемый элемент. Какие же ресурсы могут быть в изделии? Изделие действительно нельзя изменять, т. е. нецелесообразно менять при решении мини-задачи.
Но иногда изделие может:
а) изменяться само;
б) допускать расходование (т. е. изменение) какой-то части, когда его (изделия) в целом неограниченно много (например, ветер и т.д.);
в) допускать переход в надсистему (кирпич не меняется, но меняется дом);
г) допускать использование микроуровневых структур;
д) допускать соединение с "ничем", т.е. с пустотой;
е) допускать изменение на время.
Таким образом, изделие входит в ВПР лишь в тех сравнительно редких случаях, когда его можно легко менять, не меняя.
22. ВПР - это имеющиеся ресурсы. Их выгодно использовать в первую очередь. Если они окажутся недостаточными, можно привлечь другие вещества и поля. Анализ ВПР на шаге 2.3 является предварительным.
ПРИМЕР
В задаче о защите антенны фигурирует "отсутствующий молниеотвод". Поэтому в ВПР входят только вещества и поля внешней среды. В данном случае ВПР - это воздух.
1.2.3. ОПРЕДЕЛЕНИЕ ИКР И ФП
В результате применения третьей части АРИЗ должен сформулироваться образ идеального решения (ИКР). Определяется также и физическое противоречие (ФП), мешающее достижению ИКР. Не всегда возможно достичь идеального решения. Но ИКР указывает направление на наиболее сильный ответ.
ШАГ 3.1. Записать формулировку ИКР-1:
икс-элемент, абсолютно не усложняя систему и не вызывая вредных явлений, устраняет (указать вредное действие) в течение оперативного времени (ОВ) в пределах оперативной зоны (ОЗ),
сохраняя способность инструмента совершать (указать полезное действие).
ПРИМЕР
Икс-элемент, абсолютно не усложняя систему и не вызывая вредных явлений, устраняет в течение ОВ "непритягивание" молнии отсутствующим проводящим стержнем, сохраняя способность этого стержня не создавать помех для антенны.
Примечание
23. Кроме конфликта "вредное действие связано с полезным действием" возможны и другие конфликты, например "введение нового полезного действия вызывает усложнение системы" или "одно полезное действие несовместимо с другим". Поэтому приведенная в 3.1 формулировка ИКР - только образец, по типу которого необходимо записывать ИКР. Общий смысл любых формулировок ИКР: приобретение полезного качества (или устранение вредного) не должно сопровождаться ухудшением других качеств (или появлением вредного качества).
ШАГ 3.2. Усилить формулировку ИКР-1 дополнительным требованием: в систему нельзя вводить новые вещества и поля, необходимо использовать ВПР.
ПРИМЕР
В модели задачи о защите антенны инструмента нет ("отсутствующий молниеотвод"). По примечанию 24 в формулировку ИКР-1 следует ввести внешнюю среду, т. е. заменить икс-элемент словом "воздух" (можно точнее: "столб воздуха на месте отсутствующего молниеотвода").
Примечание
24. При решении мини-задачи, в соответствии с примечанием 20 и 21, следует рассматривать используемые ВПР в такой последовательности:
Наличие разных ВПР обуславливает существование четырех линий дальнейшего анализа. Практически условия задачи обычно сокращают часть линий. При решении мини-задачи достаточно вести анализ до получения идеи ответа; если идея получена, например, на "линии инструмента", можно не проверять другие линии. При решении макси-задачи целесообразно проверить все существующие в данном случае линии, т. е., получив ответ, например, на "линии инструмента", следует проверить также линии внешней среды, побочных ВПР и изделия.
При обучении АРИЗ последовательный анализ постепенно заменяется параллельным: вырабатывается умение переносить идею ответа с одной линии на другую. Это - так называемое "многоэкранное мышление": умение одновременно видеть изменения в надсистеме, системе и подсистемах.
ВНИМАНИЕ!
Решение задачи сопровождается ломкой старых представлений. Возникают новые представления, с трудом отражаемые словами. Как, например, обозначить свойства краски растворяться, не растворяясь (красить, не крася...)?
При работе с АРИЗ записи надо вести простыми, не техническими, даже "детскими" словами, всячески избегая спецтерминов (они увеличивают психологическую инерцию).
ШАГ 3.3. Записать формулировку физического противоречия на макроуровне:
оперативная зона в течение оперативного времени должна (указать физическое макросостояние, например "быть горячей"), чтобы выполнять (указать одно из конфликтующих действий), и не должна (указать противоположное физическое макросостояние, например "быть холодной"), чтобы выполнять (указать другое конфликтующее действие или требование).
Примечания
25. Физическим противоречием (ФП) называют противоположные требования к физическому состоянию оперативной зоны.
26. Если составление полной формулировки ФП вызывает затруднения, можно составить краткую формулировку: элемент (или часть элемента в оперативной зоне) должен быть, чтобы (указать), и не должен быть, чтобы (указать).
ПРИМЕР
Столб воздуха в течение ОВ должен быть электропроводным, чтобы отводить молнию, и должен быть неэлектропроводным, чтобы не поглощать радиоволны.
Эта формулировка наводит на ответ: столб воздуха должен быть электропроводным при разряде молнии и должен быть неэлектропроводным в остальное время. Разряд молнии сравнительно редкое явление, к тому же очень быстро проходящее. Закон согласования ритмики: периодичность появления громоотвода должна быть та же, что и периодичность появления молнии.
Это, конечно, не весь ответ. Как, например, сделать, чтобы столб воздуха при появлении разряда превращался в проводник? Как сделать, чтобы проводник исчезал сразу по окончании разряда?
ВНИМАНИЕ!
При решении задачи по АРИЗ ответ формируется постепенно, как бы "проявляется". Опасно прерывать решение при первом намеке на ответ и "закреплять" еще не вполне готовый ответ. Решение по АРИЗ должно быть доведено до конца.
ШАГ 3.4. Записать формулировку физического противоречия на микроуровне:
в оперативной зоне должны быть частицы вещества (указать их физическое состояние или действие), чтобы обеспечить (указать требуемое по 3.3. макросостояние), и не должны быть такие частицы (или должны быть частицы с противоположным состоянием или действием), чтобы обеспечить (указать требуемое по 3.3. другое макросостояние).
ПРИМЕР
В столбе воздуха (при разряде молнии) должны быть свободные заряды, чтобы обеспечить электропроводность (для отвода молнии), и не должны быть (в остальное время) свободные заряды, чтобы не было электропроводности (из-за которой поглощаются радиоволны).
Примечания
27. При выполнении шага 3.4. еще нет необходимости конкретизировать понятие "частицы". Это могут быть, например, домены, молекулы, ионы и т.д.
28. Частицы могут оказаться: а) просто частицами вещества, б) частицами вещества в сочетании с каким-то полем и (реже) в) "частицами поля".
29. Если задача имеет решение только на макроуровне, 3.4. может не получиться, потому что дает дополнительную информацию: задача решается на макроуровне.
ВНИМАНИЕ!
Три первые части АРИЗ существенно перестраивают исходную задачу. Итог этой перестройки подводит шаг 3.5. Составляя формулировку ИКР-2, мы одновременно получаем новую задачу - физическую. В дальнейшем надо решать именно эту задачу.
ШАГ 3.5. Записать формулировку идеального конечного результата ИКР-2:
оперативная зона (указать) в течение оперативного времени (указать)
должна сама обеспечивать (указать противоположные физические макро- или микросостояния).
ПРИМЕР
Нейтральные молекулы в столбе воздуха должны сами превращаться в свободные заряды при разряде молнии, а после разряда молнии свободные заряды должны сами превращаться в нейтральные молекулы.
Смысл новой задачи: на время разряда молнии в столбе воздуха в отличие от окружающего воздуха должны сами собой появляться свободные заряды, тогда столб ионизированного воздуха сработает как "молниеотвод" и "притянет" молнию к себе. После разряда молнии свободные заряды в столбе воздуха должны сами собой вновь стать нейтральными молекулами. Для решения этой задачи достаточно знать физику 9-го класса...
ШАГ 3.6. Проверить возможность применения системы стандартов к решению физической задачи, сформулированной в виде ИКР-2. Если задача не решена, перейти к четвертой части АРИЗ.
Если задача решена, можно перейти к седьмой части АРИЗ, хотя и в этом случае рекомендуется продолжить анализ по четвертой части.
1.2. 4. МОБИЛИЗАЦИЯ И ПРИМЕНЕНИЕ ВПР
Ранее - на шаге 2.3. - были определены имеющиеся ВПР, которые можно использовать бесплатно. Четвертая часть АРИЗ включает планомерные операции по увеличению ресурсов: рассматриваются производные ВПР, получаемые почти бесплатно путем минимальных изменений имеющихся ВПР. Шаги 3.3. - 3.5. начали переход от задачи к ответу, основанному на использовании физики; четвертая часть АРИЗ продолжает эту линию.
Правило 4. Каждый вид частиц, находясь в одном физическом состоянии, должен выполнять одну функцию. Если частицы А не справляются с действиями 1 и 2, надо ввести частицы Б; частицы А выполняют действие 1, а частицы Б – действие 2.
Правило 5. Введенные частицы Б можно разделить на две группы: Б-1 и Б-2. Это позволяет "бесплатно" - за счет взаимодействия между уже имеющимися частицами Б - получить новое действие - 3.
Правило 6. Разделение частиц на группы выгодно и в тех случаях, когда в системе должны быть только частицы А; одну группу частиц А оставляют в прежнем состоянии, у другой группы меняют главный для данной задачи параметр.
Правило 7. Разделенные или введенные частицы после отработки должны стать неотличимыми друг от друга или от ранее имевшихся частиц.
Примечание
30. Правила 4-7 относятся ко всем шагам четвертой части АРИЗ.
ШАГ 4.1. Метод ММЧ.
а) используя метод ММЧ (моделирование "маленькими человечками"), построить схему конфликта;
б
) изменить схему А так, чтобы "маленькие человечки" действовали, не вызывая конфликта;
в) перейти к технической схеме.
Примечания
31. Метод моделирования "маленькими человечками" состоит в том, что конфликтующие требования схематически представляют в виде условного рисунка (или нескольких последовательных рисунков), на котором действует большое число "маленьких человечков" (группа, несколько групп, "толпа"). Изображать в виде "маленьких человечков" следует только изменяемые части модели задачи (инструмент, икс-элемент).
"Конфликтующие требования" - это конфликт из модели задачи или противоположные физические состояния, указанные на шаге 3.5. Вероятно, лучше последнее, но пока нет четких правил перехода от физической задачи (3.5) к ММЧ, легче рисовать "конфликт" в модели задачи.
Шаг 4.1(б) часто можно выполнить, совместив на одном рисунке два изображения: плохое действие и хорошее действие. Если события развиваются во времени, целесообразно сделать несколько последовательных рисунков.
ВНИМАНИЕ!
Здесь часто совершают ошибку, ограничиваясь беглыми, небрежными рисунками. Хорошие рисунки:
а) выразительны и понятны без слов;
б) дают дополнительную информацию о физпротиворечии, указывая в общем виде пути его устранения.
32. Шаг 4.1. - вспомогательный. Он нужен, чтобы перед мобилизацией ВПР нагляднее представить что, собственно, должны делать частицы вещества в оперативной зоне и близ нее. Метод ММЧ позволяет отчетливее увидеть идеальное действие ("что надо сделать") без физики ("как это сделать"). Благодаря этому снимается психологическая инерция, фокусируется работа воображения. Таким образом, ММЧ - метод психологический. Но моделирование "маленькими человечками" осуществляется с учетом законов развития технических систем. Поэтому ММЧ нередко приводит к техническому решению задачи. Прерывать решение в этом случае не надо, мобилизация ВПР обязательно должна быть проведена.
ПРИМЕР
а) Человечки внутри мысленно выделенного столба воздуха ничем не отличаются от человечков воздуха за пределами столба. Те и другие одинаково нейтральны (на рисунке это показано условно: человечки держат друг друга, руки у них заняты, человечки не хватают молнию).
б) По правилу 6 надо разделить человечков на две группы: человечки вне столба пусть остаются без изменений (нейтральные пары), а человечки в столбе, оставаясь в парах (т.е. оставаясь нейтральными), пусть высвободят одну руку, как бы символизируя их стремление притянуть молнию.
(Возможны и другие рисунки. Но в любом случае ясна необходимость разделить человечков на две группы, изменить состояние человечков в столбе.)
в) Молекула воздуха (в столбе), оставаясь нейтральной молекулой, должна быть более склонна к ионизации, распаду. Простейший прием - уменьшение давления воздуха внутри столба.
ВНИМАНИЕ!
Цель мобилизации ресурсов при решении мини-задачи не в том, чтобы использовать все ресурсы. Цель иная - при минимальном расходе ресурсов получить один максимально сильный ответ.
ШАГ 4.2. Если из условий задачи известно, какой должна быть готовая система, и задача сводится к определению способа получения этой системы, можно использовать метод "шаг назад от ИКР". Изображают готовую систему, а затем вносят в рисунок минимальное демонтирующее изменение.
Например, если в ИКР две детали соприкасаются, то при минимальном отступлении от ИКР между деталями надо показать зазор. Возникает новая задача (микро-задача): как устранить дефект?
Разрешение такой микро-задачи обычно не вызывает затруднений и часто подсказывает способ решения общей задачи.
ШАГ 4.3. Определить, решается ли задача применением смеси ресурсных веществ.
Примечания
33. Если бы для решения могли быть использованы ресурсные вещества (в том виде, в каком они даны) задача, скорее всего, не возникла или была бы решена автоматически. Обычно нужны новые вещества, но введение их связано с усложнением системы, появлением побочных вредных факторов и т.д. Суть работы с ВПР в четвертой части АРИЗ в том, чтобы обойти это противоречие и ввести новые вещества, не вводя их.
34. Шаг 4.3. состоит (в простейшем случае) в переходе от двух моновеществ к неоднородному бивеществу. Может возникнуть вопрос: возможен ли переход от моновещества к однородному бивеществу или поливеществу? Аналогичный переход от системы к однородной бисистеме или полисистеме применяется очень широко (отражен в стандарте 3.1.1). Но в этом стандарте речь идет об объединении систем, а на шаге 4.3. рассматривается объединение веществ. При объединении двух одинаковых систем возникает новая система. А при объединении двух "кусков" вещества происходит простое увеличение количества.
Один из механизмов образования новой системы при объединении одинаковых систем состоит в том, что в объединенной системе сохраняются границы между объединившимися системами. Так, если моносистема - лист, то полисистема - блокнот, а не один очень толстый лист. Но сохранение границ требует введения второго (граничного) вещества (пусть это будет даже пустота). Отсюда шаг 4.4. - создание неоднородной квазиполисистемы, в которой роль второго - граничного - вещества играет пустота. Правда, пустота - необычный партнер. При смешивании вещества и пустоты границы не всегда видны. Но новое качество появляется, а именно это и нужно.
ШАГ 4.4. Определить, решается ли задача заменой имеющихся ресурсных веществ пустотой или смесью ресурсных веществ с пустотой.
ПРИМЕР
Смесь воздуха и пустоты - это воздух под пониженным давлением. Из курса физики 9-го класса известно, что при уменьшении давления газа, уменьшается и напряжение, необходимое для возникновения разряда. Теперь ответ на задачу об антенне получен практически полностью. А.с. 177 497: "Молниеотвод, отличающийся тем, что, с целью придания ему свойства радиопрозрачности, он выполнен в виде изготовленной из диэлектрического материала герметически закрытой трубы, давление воздуха в которой выбрано из условия наименьших газоразрядных градиентов, вызываемых электрическим полем развивающейся молнии".
Примечание
35. Пустота - исключительно важный вещественный ресурс. Она всегда имеется в неограниченном количестве, предельно дешева, легко смешивается с имеющимися веществами, образуя, например, полые и пористые структуры, пену, пузырьки и т.д.
Пустота - это не обязательно вакуум. Если вещество твердое, пустота в нем может быть заполнена жидкостью или газом. Если вещество жидкое, пустота может быть газовым пузырьком. Для вещественных структур определенного уровня пустотой являются структуры нижних уровней (см. примечание 37). Так, для кристаллической решетки пустотой являются отдельные молекулы, отдельные атомы и т.д.
ШАГ 4.5. Определить, решается ли задача применением веществ, производных от ресурсных (или применением смеси этих производных веществ с "пустотой").
Примечание
36. Производные ресурсные вещества получают изменением агрегатного состояния имеющихся ресурсных веществ. Если, например, ресурсное вещество жидкость, к производным относятся лед и пар. Производными считаются и продукты разложения ресурсных веществ. Так, для воды производными будут водород и кислород. Для многокомпонентных веществ производные - их компоненты. Производными являются также вещества, образующие при разложении или сгорании ресурсные вещества.
Правило 8. Если для решения задачи нужны частицы вещества (например, ионы), а непосредственное их получение невозможно по условиям задачи, требуемые частицы надо получить разрушением вещества более высокого структурного уровня (например, молекул).
Правило 9. Если для решения задачи нужны частицы вещества (например, молекулы) и невозможно получить их непосредственно или по правилу 8, требуемые частицы надо получать достройкой или объединением частиц более низкого структурного уровня (например, ионов).
Правило 10. При применении правила 8 простейший путь - разрушение ближайшего вышестоящего "целого" или "избыточного" (отрицательные ионы) уровня, а при применении правила 9 простейший путь - достройка ближайшего нижестоящего "нецелого" уровня.
Примечание
37. Вещество представляет собой многоуровневую иерархическую систему. С достаточной для практических целей точностью иерархию уровней можно представить так:
минимально обработанное вещество (простейшее техновещество, например проволока);
"сверхмолекулы": кристаллические решетки, полимеры, ассоциации молекул;
сложные молекулы;
молекулы;
части молекул, группы атомов;
атомы;
части атомов;
элементарные частицы;
поля.
Суть правила 8: новое вещество можно получить обходным путем - разрушением более крупных структур ресурсных веществ или таких веществ, которые могут быть введены в систему.
Суть правила 9: возможен и другой путь - достройка менее крупных структур.
Суть правила 10: разрушать выгоднее "целые частицы (молекулы, атомы), поскольку нецелые частицы (положительные ионы) уже частично разрушены и сопротивляются дальнейшему разрушению; достраивать, наоборот, выгоднее нецелые частицы, стремящиеся к восстановлению.
Правила 8-10 указывают эффективные пути получения производных ресурсных веществ из "недр" уже имеющихся или легко вводимых веществ. Правила наводят на физэффект, необходимый в том или ином конкретном случае.
ШАГ 4.6. Определить, решается ли задача введением вместо вещества электрического поля или взаимодействием двух электрических полей.
ПРИМЕР
Известен способ разрыва труб скручиванием (а. с. №182671). При скручивании трубы приходится механически зажимать, это вызывает их деформацию. Предложено возбуждать крутящий момент в самой трубе - за счет электродинамических сил (а.с. №342759).
Примечание
38. Если использование ресурсных веществ - имеющихся и производных - недопустимо по условиям задачи, надо использовать электроны - подвижные (ток) или неподвижные. Электроны - "вещество", которое всегда есть в имеющемся объекте. К тому же электроны - вещество в сочетании с полем, что обеспечивает высокую управляемость.
ШАГ 4.7. Определить, решается ли задача применением пары "поле - добавка вещества, отзывающегося на поле" (например, "магнитное поле - ферровещество", "ультрафиолет - люминофор", "тепловое поле - металл с памятью формы" и т.д.)
Примечание
39. На шаге 2.3 рассмотрены уже имеющиеся ВПР. Шаги 4.3-4.5 относятся к ВПР, производным от имеющихся. Шаг 4.6 - частичный отход от имеющихся и производных ВПР: вводят "посторонние" поля. Шаг 4.7 - еще одно отступление: вводят "посторонние" вещества и поля.
Решение мини-задачи тем идеальнее, чем меньше затраты ВПР. Однако не каждая задача решается при малом расходе ВПР. Иногда приходится отступать, вводя "посторонние" вещества и поля. Делать это надо только при действительной необходимости, если никак нельзя обойтись наличным ВПР.
1.2.5. ПРИМЕНЕНИЕ ИНФОРМФОНДА
Во многих случаях четвертая часть АРИЗ приводит к решению задачи. В таких случаях можно переходить к седьмой части. Если же после 4.7 ответа нет, надо пройти пятую часть.
Цель пятой части АРИЗ - использование опыта, сконцентрированного в информационном фонде ТРИЗ. К моменту ввода в пятую часть АРИЗ задача существенно проясняется - становится возможным ее прямое решение с помощью информационного фонда.
ШАГ 5.1. Рассмотреть возможность решения задачи (в формулировке ИКР-2 и с учетом ВПР, уточненных в четвертой части) по стандартам.
Примечание
40. Возврат к стандартам происходит, в сущности, уже на шагах 4.6 и 4.7 До этих шагов главной идеей было использование имеющихся ВПР, по возможности избегая новых веществ и полей. Если задачу не удается решить в рамках имеющихся и производных ВПР, приходится вводить новые вещества и поля. Большинство стандартов как раз и относятся к технике введения добавок.
ШАГ 5.2. Рассмотреть возможность решения задачи (в формулировке ИКР-2 с учетом ВПР, уточненных в четвертой части) по аналогии с еще нестандартными задачами, ранее решенными по АРИЗ.
Примечание
41. При бесконечном многообразии изобретательских задач число физических противоречий, на которых "держатся" эти задачи, сравнительно невелико.
Поэтому значительная часть задач решается по аналогии с другими задачами, содержащими аналогичное физпротиворечие. Внешне задачи могут быть весьма различными, аналогия выявляется только после анализа - на уровне физпротиворечия.
ШАГ 5.3. Рассмотреть возможность устранения физического противоречия с помощью типовых преобразований (таблица 2 "Разрешение физических противоречий").
Правило 11. Пригодны только те решения, которые совпадают с ИКР или практически близки к нему.
ШАГ 5.4. Применение "Указателя физэффектов".
Рассмотреть возможность устранения физпротиворечия с помощью "Указателя применения физических эффектов и явлений".
Примечание
42. Разделы "Указателя применения физических эффектов и явлений" опубликованы в журнале "Техника и наука" (1981. N 1-9; 1983. N 3-8), а также в книге "Дерзкие формулы творчества" (Петрозаводск: Карелия, 1987).
1.2.6. ИЗМЕНЕНИЕ ИЛИ ЗАМЕНА ЗАДАЧИ
Простые задачи решаются буквальным преодолением ФП, например разделением противоречивых свойств во времени или в пространстве. Решение сложных задач обычно связано с изменением смысла задачи - снятием первоначальных ограничений, психологической инерцией и до решения кажущихся самоочевидными. Например, увеличение скорости "ледокола" достигается переходом к "ледоНЕколу". Вечная "краска" оказывается не краской в буквальном смысле слова, а пузырьками газа, возникающими при электролизе. Для правильного понимания задачи необходимо ее сначала решить: изобретательские задачи не могут быть сразу поставлены точно. Процесс решения, в сущности, есть процесс корректировки задачи.
ШАГ 6.1. Если задача решена, перейти от физического ответа к техническому: сформулировать способ и дать принципиальную схему устройства, осуществляющего этот способ.
ШАГ 6.2. Если ответа нет, проверить - не является ли формулировка 1.1 сочетанием нескольких разных задач. В этом случае следует изменить 1.1, выделив отдельные задачи для поочередного решения (обычно достаточно решить одну главную задачу).
ПРИМЕР
Задача: "Как запаивать звенья тонких и тончайших золотых цепочек? Вес 1 метра такой цепочки всего 1 грамм. Нужен способ, позволяющий запаивать за день десятки и сотни метров цепочки".
Задача разбивается на ряд подзадач:
а) как ввести микродозы припоя в зазоры звеньев?
б) как обеспечить нагрев внесенных микродоз припоя без вреда для всей цепочки?
в) как убрать излишки припоя, если они есть?
Главная задача - внесение микродоз припоя в зазоры.
ШАГ 6.3. Если ответа нет, изменить задачу, выбрав на шаге 1.4 другое ТП.
ПРИМЕР
При решении задач на измерение и обнаружение выбор другого ТП часто означает отказ от усовершенствования измерительной части и изменение всей системы так, чтобы необходимость в измерении вообще отпала (стандарт 4.1.1).
Характерный пример - решение задачи о последовательной перекачке нефтепродуктов по одному нефтепроводу. При применении жидкого разделителя или прямой (без разделителя) транспортировке, задача состоит в возможно более точном контроле за составом "стыковых" участков перекачиваемых нефтепродуктов.
Эта измерительная задача была превращена в "изменительную": как вообще избежать смешивания нефтепродуктов с разделительной жидкостью?
Решение: пусть жидкости бесконтрольно смешиваются, но в конечном пункте жидкость-разделитель должна сама превращаться в газ и уходить из резервуара (подробно см.: Альтшуллер Г. Алгоритм изобретения. 2-е изд. М.,1973г. с. 207-209, 270-271).
ШАГ 6.4. Если ответа нет, вернуться к шагу 1.1. и заново сформулировать мини-задачу, отнеся ее к надсистеме. При необходимости такое возвращение совершают несколько раз - с переходом к наднадсистеме и т.д.
ПРИМЕР
Типичным примером является решение задачи о газотеплозащитном скафандре (подробно см.: Альтшуллер Г. Алгоритм изобретения, 2-е изд. М., 1973г. с. 105-110).
Первоначально была поставлена задача на создание холодильного костюма. Но обеспечить требуемую холодильную мощность при заданном весе системы оказалось физически невозможно.
Задача была решена переходом к надсистеме. Создан газотеплозащитный скафандр, одновременно выполняющий функции холодильного костюма и дыхательного защитного прибора. Скафандр работает на жидком кислороде, который сначала испаряется и нагревается, обеспечивая теплоотвод, а потом идет на дыхание. Переход к надсистеме позволил в 2-3 раза увеличить допустимый весовой предел.
1.2.7. АНАЛИЗ СПОСОБА УСТРАНЕНИЯ ФП
Главная цель седьмой части АРИЗ - проверка качества полученного ответа. Физическое противоречие должно быть устранено почти идеально, "без ничего". Лучше потратить 2-3 часа на получение нового - более сильного - ответа, чем потом полжизни бороться за плохо внедряемую слабую идею.
ШАГ 7.1. Контроль ответа. Рассмотреть вводимые вещества и поля. Можно ли не вводить новые вещества и поля, использовав ВПР - имеющиеся и производные? Можно ли использовать саморегулируемые вещества? Ввести соответствующие поправки в технический ответ.
Примечание
43. Саморегулируемые (в условиях данной задачи) вещества - это такие вещества, которые определенным образом меняют свои физические параметры при изменении внешних условий, например теряют магнитные свойства при нагревании выше точки Кюри. Применение саморегулируемых веществ позволяет менять состояние системы или проводить в ней измерения без дополнительных устройств.
ШАГ 7.2. Провести предварительную оценку полученного решения.
Контрольные вопросы:
а) Обеспечивает ли полученное решение выполнение главного требования ИКР-1 ("Элемент сам...")?
б) Какое физическое противоречие устранено (и устранено ли) полученным решением?
в) Содержит ли полученная система хотя бы один хорошо управляемый элемент? Какой именно? Как осуществлять управление?
г) Годится ли решение, найденное для "одноцикловой" модели задачи в реальных условиях со многими циклами?
Если полученное решение не удовлетворяет хотя бы одному из контрольных вопросов, вернуться к 1.1.
ШАГ 7.3. Проверить (по патентным данным) формальную новизну полученного решения.
ШАГ 7.4. Какие подзадачи возникнут при технической разработке полученной идеи? Записать возможные подзадачи - изобретательские, конструкторские, расчетные, организационные.
1.2.8. ПРИМЕНЕНИЕ ПОЛУЧЕННОГО ОТВЕТА
Действительно хорошая идея не только решает конкретную задачу, но и дает универсальный ключ ко многим другим аналогичным задачам. Восьмая часть АРИЗ имеет целью максимальное использование ресурсов найденной идеи.
ШАГ 8.1. Определить, как должна быть изменена надсистема, в которую входит измененная система.
ШАГ 8.2. Проверить, может ли измененная система (или надсистема) применяться по-новому.
ШАГ 8.3. Использовать полученный ответ при решении других технических задач:
а) сформулировать в обобщенном виде полученный принцип решения;
б) рассмотреть возможность прямого применения полученного принципа при решении других задач;
в) рассмотреть возможность использования принципа, обратного полученному;
г) построить морфологическую таблицу, например, типа "расположение частей - агрегатные состояния изделия" или "использованные поля - агрегатные состояния внешней среды" и рассмотреть возможные перестройки ответа по позициям этих таблиц;
д) рассмотреть изменение найденного принципа при изменении размеров системы (или главных ее частей): размеры стремятся к нулю, размеры стремятся к бесконечности.
Примечание
44. Если работа ведется не только ради решения конкретной технической задачи, тщательное выполнение шагов 8.3а - 8.3д может стать началом разработки новой теории, исходящей из полученного принципа.
1.2.9. АНАЛИЗ ХОДА РЕШЕНИЯ
Каждая решенная по АРИЗ задача должна повышать творческий потенциал человека. Но для этого необходимо тщательно проанализировать ход решения. В этом смысл девятой (завершающей) части АРИЗ.
ШАГ 9.1. Сравнить реальный ход решения данной задачи с теоретическим (по АРИЗ). Если есть отклонения, записать.
ШАГ 9.2. Сравнить полученный результат с данными информационного фонда ТРИЗ (стандарты, приемы, физэффекты). Если в информационном фонде нет подобного принципа, записать его в предварительный накопитель.
ВНИМАНИЕ!
АРИЗ-85-В опробован на многих задачах - практически на всем фонде задач, используемом при обучении ТРИЗ. Забывая об этом, иногда "с ходу" предлагают усовершенствования, основанные на опыте решения одной задачи. Для этой одной задачи предлагаемые изменения возможны и хороши (допустим!), но, облегчая решение одной задачи, они, как правило, затрудняют решение всех других...
Любое предложение желательно вначале испытать вне АРИЗ (так было, например, с методом ММЧ). После введения в АРИЗ каждое изменение должно быть опробовано разбором как минимум 20-25 достаточно трудных задач.
АРИЗ постоянно совершенствуется и потому нуждается в притоке новых идей, но эти идеи должны быть сначала тщательно проверены.
ТАБЛИЦА 1
СХЕМЫ ТИПИЧНЫХ КОНФЛИКТОВ В МОДЕЛЯХ ЗАДАЧ
1
. ПРОТИВОДЕЙСТВИЕ. А действует на Б полезно (сплошная стрелка), но при этом постоянно или на отдельных этапах возникает обратное вредное действие (волнистая стрелка). Требуется устранить вредное действие, сохранив полезное действие.
ПРИМЕРЫ
- Задача об отделении опалубки после затвердевания бетона (Техника и наука, 1981, № 5-7);
- задача о размыкателе (Техника и наука, 1981, № 3-5);
- задача о мешалке для расплава стали (Техника и наука, 1981, № 8).
2. СОПРЯЖЕННОЕ ДЕЙСТВИЕ
Полезное действие А на Б в чем-то оказывается вредным действием на это же Б (например, на разных этапах работы одно и то же действие может быть то полезным, то вредным).
Требуется устранить вредное действие, сохранив полезное.
ПРИМЕР
- Задача о вводе порошка в расплав металла (Техника и наука, 1980, № 8).

3. СОПРЯЖЕННОЕ ДЕЙСТВИЕ
Полезное действие А на одну часть Б оказывается вредным для другой части Б.
Требуется устранить вредное действие на Б2, сохранив полезное действие на Б1.
ПРИМЕР
- Задача о "Бегущей по волнам" (Техника и наука, 1981, № 2).

4. СОПРЯЖЕННОЕ ДЕЙСТВИЕ
Полезное действие А на Б является вредным действием на В (причем А, Б и В образуют систему).
Требуется устранить вредное действие, сохранив полезное и не разрушив систему.
ПРИМЕР
- Задача о кабине стратостата (Техника и наука, 1980, № 2).

5. СОПРЯЖЕННОЕ ДЕЙСТВИЕ
Полезное действие А на Б сопровождается вредным действием на само А (в частности, вызывая усложнение А). Требуется устранить вредное действие, сохранив полезное.
ПРИМЕР
- Задача о паяльнике (Техника и наука, 1980, № 4).

6. НЕСОВМЕСТИМОЕ ДЕЙСТВИЕ
Полезное действие А на Б несовместимо с полезным действием В на Б (например, обработка несовместима с измерением).
Требуется обеспечить действие В на Б (пунктирная стрелка), не меняя действия А на Б.
ПРИМЕРЫ
- Задача об измерении диаметра шлифовального круга в процессе работы (Техника и наука, 1980, № 7);
- задача о киноаппарате и гермошлеме (Техника и наука, 1981, № 9).

7. НЕПОЛНОЕ ДЕЙСТВИЕ ИЛИ БЕЗДЕЙСТВИЕ
А оказывает на Б одно действие, а нужны два равных действия. Или А не действует на Б. Иногда А вообще не дано: надо изменить Б, а каким образом –
неизвестно.
Требуется обеспечить действие на Б при минимально простом А.
ПРИМЕРЫ
Задача о смазке валков при прокате (Техника и наука. 1981. №7-8); задача о получении высокого давления (Техника и наука, 1979, №6).

8
. "БЕЗМОЛВИЕ"
Нет информации (волнистая пунктирная стрелка) об А, Б или взаимодействии А и Б. Иногда дано только Б. Требуется получить необходимую информацию.

9
. НЕРЕГУЛИРУЕМОЕ (В ЧАСТНОСТИ, ИЗБЫТОЧНОЕ) ДЕЙСТВИЕ
А действует на Б нерегулируемо (например постоянно), а нужно регулируемое действие (например, переменное). Требуется сделать действие А на Б регулируемым (штрих-пунктирная стрелка).
ПРИМЕРЫ
Задача о сливе стекла из ковша (Техника и наука. 1979. №10);
задача об ампуле (Техника и наука. 1981. №9).

ТАБЛИЦА 2
РАЗРЕШЕНИЕ ФИЗИЧЕСКИХ ПРОТИВОРЕЧИЙ
| ПРИНЦИПЫ
| ПРИМЕРЫ |
1 | Разделение противоречивых свойств в пространстве. | А.с. № 256708: для пылеподавления при горных работах капельки воды должны быть мелкими. Но мелкие капли образуют туман. Предложено мелкие капли окружать конусом из крупных капель. |
2 | Разделение противоречивых свойств во времени. | Стандарт 2.2.3. (в Системе-76) А.с. № 258490: ширину ленточного электрода меняют в зависимости от ширины сварного шва. |
3 | Системный переход 1а: объединение однородных или неоднородных систем в надсистему. | Стандарт 3.1.1 А.с. № 722624: слябы транспортируют по рольгангу впритык один к другому, чтобы не охлаждались торцы. |
4 | Системный переход 1б: от системы к антисистеме или сочетанию системы с антисистемой. | Стандарт 3.1.3. А.с. № 523695: Способ остановки кровотечения - прикладывают салфетку, пропитанную противогруппной кровью. |
5 | Системный переход 1в: вся система наделяется свойством С, а ее части - свойством анти-С. | Стандарт 3.1.5. А.с. № 510350: рабочие части тисков для зажима деталей сложной формы: каждая часть (стальная втулка) твердая, а в целом зажим податливый, способен менять форму. |
6 | Системный переход 2: переход к системе, работающей на микроуровне. | Стандарт 3.2.1 А.с. № 179479: вместо механического крана - "термо-кран" из двух материалов с разными коэффициентами теплового расширения. При нагреве образуется зазор. |
7 | Фазовый переход 1: замена фазового состояния части системы или внешней среды. | Стандарт 5.3.1. А.с. № 252262: cпособ энергоснабжения потребителей сжатого газа в шахтах - транспортируют сжиженный газ. |
8 | Фазовый переход 2: "двойственное" фазовое состояние одной части системы (переход этой части из одного состояния в другое в зависимости от условий работы) | Стандарт 5.3.2. А.с. № 958837: теплообменник снабжен прижатыми к нему "лепестками" из никелида титана: при повышении температуры "лепестки" отгибаются, увеличивая площадь охлаждения. |
9 | Фазовый переход 3: использование явлений, сопутствующих фазовому переходу. | Стандарт 5.3.3. А.с. № 601192: приспособление для транспортировки мороженых грузов имеет опорные элементы в виде брусков льда (снижение трения за счет таяния). |
10 | Фазовый переход 4: замена однофазового вещества двухфазовым. | Стандарты 5.3.4 и 5.3.5. А.с. № 722740: способ полирования изделий. Рабочая среда состоит из жидкости (расплава свинца) и ферромагнитных абразивных частиц. |
11 | Физико-химический переход: возникновение - исчезновение вещества за счет разложения - соединения, ионизации - рекомбинации. | Стандарты 5.5.1 и 5.5.2. А.с. № 342761: для пластификации древесины аммиаком осуществляют пропитку древесины солями аммония, разлагающимися при трении. |
ПРИЛОЖЕНИЕ 1
ЗАДАЧА О ПЕРЕВОЗКЕ ШЛАКА
СИТУАЦИЯ
Доменный шлак (температура paсплава 1000°С) перевозят к шлакоперерабатывающей установке в ковшах, установленных на железнодорожных платформах. Из-за действия холодного воздуха на поверхности расплава образуется толстая корка твердого шлака. Теряется около трети перевозимого жидкого шлака. В корке приходится пробивать отверстия для слива шлака, а после удалять затвердевший шлак. Можно предотвратить образование корки, применив теплоизолирующую крышку. Но это существенно затруднит работу: нужно будет снимать и надевать громоздкую крышку. Как быть?
РЕШЕНИЕ
Шаг 1.1. Мини-задача. ТС для перевозки расплавленного доменного шлака включает железнодорожную платформу, ковш, расплавленный шлак. ТП-1: если ковш имеет крышку, не образуется твердой корки застывшего шлака, но обслуживание системы замедляется. ТП-2: если ковш не имеет крышки, обслуживание не замедляется, но образуется твердая корка. Необходимо при минимальных изменениях в системе предотвратить образование твердой корки шлака.
Пояснение 1
По примечанию 4 следует заменить термин "крышка". На первый взгляд, этот термин кажется безобидным, но он связан с представлением о жестком (или почти жестком) покрытии, которое необходимо открывать и закрывать. При решении задачи может оказаться, что крышка жидкая или газообразная и что она служит один раз, потом, например, сгорая... Нам нужна не "крышка", а "теплоудержалка"... В этом учебном разборе мы сознательно оставляем слово "крышка", чтобы не упрощать чрезмерно задачу.
Шаг 1.2. Конфликтующая пара. Изделие - расплавленный шлак. Инструмент –
крышка (отсутствующий, присутствующий).
Шаг 1.3. Схемы ТП:
Т
П-1: Крышка есть ТП-2: Крышки нет
Шаг 1.4. Выбор ТП. Главная цель системы - перевозка шлака. Выбираем ТП-2 (шлак перевозится быстро, но с потерями, так как образуется корка).
Шаг 1.5. Усиление ТП. Нет необходимости усиливать ТП, поскольку уже принято, что крышка отсутствует.
Шаг 1.6. Модель задачи. Даны расплавленный шлак и отсутствующая крышка. Отсутствующая крышка не замедляет обслуживание, но и не препятствует образованию корки. Необходимо найти такой икс-элемент, который, сохраняя способность отсутствующей крышки не замедлять обслуживание, предотвращал бы образование корки.
Шаг 1.7. Применение стандартов
Пояснение 2
Задача четко решается по стандарту 1.2.2 на устранение вредной связи введением видоизмененных B1 и B2. Но мы рассматриваем анализ этой учебной задачи именно по АРИЗ, поэтому отсылку к стандартам не принимаем во внимание.
Шаг 2.1.Оперативная зона. Пространство, ранее занимаемое крышкой, т. е. "пустой" слой над жидким шлаком.
Шаг 2.2. Оперативное время. Т1 - время от начала заливки до окончания слива шлака. Т2 - время до заливки ковша.
Шаг 2.3. Вещественно-полевые ресурсы.
Внутрисистемные ВПР:
"отсутствующая крышка", т. е. воздух в пустом слое над шлаком;
жидкий шлак, прилегающий к отсутствующей крышке;
тепловое поле изделия, т. е. жидкого шлака.
Внешнесистемные ВПР:
воздух над "отсутствующей крышкой";
фоновые поля.
Надсистемные ВПР:
отходов нет,
"копеечные" - воздух, вода, земля (почва) и т. п.
Шаг 3.1. ИКР-1. Икс-элемент, абсолютно не усложняя систему и не вызывая вредных явлений, предотвращает в течение 0В образование корки, сохраняя способность отсутствующей крышки свободно пропускать шлак при заполнении и опорожнении ковша.
Шаг 3.2. Усиленный ИКР-1. Для усиления формулировки ИКР-1 надо заменить "икс-элемент" словами "слой воздуха".
Шаг 3.3. Макро-ФП. Слой воздуха в 0З должен быть заполнен нетеплопроводным веществом, чтобы уменьшить охлаждение шлака, и не должен быть заполнен веществом, чтобы не мешать заливу и сливу шлака.
Шаг 3.4. Микро-ФП. Cлой воздуха в 03 должен быть заполнен связанными друг с другом частицами, чтобы не проходил холодный воздух, и не должен быть заполнен связанными частицами, чтобы свободно проходил наливаемый и сливаемый шлак.
Шаг 3.5. ИКР-2. Слой воздуха в 03 при заливке шлака должен сам превращаться в нетеплопроводное вещество, которое должно само же исчезать при сливании шлака.
Шаг 3.6. Применение стандартов.
См. запись на шаге 1.7 (пояснение 2).
Шаг 4.1. Метод ММЧ. В этой записи учебной задачи шаг 4.1 опущен из тех же соображений, что и шаги 1.7 и 3.6.
Шаг 4.2. Шаг назад от ИКР. Формально в данном случае шаг 4.2 следует пропустить: мы не знаем, какой должна быть готовая система. Но любопытно использовать и этот шаг, хотя бы в учебных целях.
ИКР: "готовая система" включает какую-то "крышку", идеально (полностью) отделяющую холодный воздух от горячего шлака.
Шаг назад от ИКР: появилось сквозное отверстие.
Устранение дефекта: простейший, очевидный способ - использовать "пробку".
Переход к общему решению: "крышка" должна состоять из многих "пробок".
Техническое решение: "пробки", выполненные из ВПР, т. е. из воздуха и шлака, - пористые шлаковые гранулы, пена. Главный ВПР - воздух, следовательно, больше всего подходит пена.
Шаг 4.3. Применение смесей. Воздух и шлак дают ряд структур, обладающих высокими теплоизолирующими свойствами: пористые гранулы, полые гранулы, пена. Больше всего воздуха в пене, а мы проверяем "линию воздуха". Следовательно, первый вероятный ответ - использование пены в качестве "крышки".
Пену образуют, добавляя небольшое количество воды в ковш во время заливки шлака. Таким образом, идею реализуют, не выходя за рамки имеющихся ВПР. Это обусловливает высокое качество решения.
Шаг 4.4. Применение "пустоты". Идея применения шлаковой пены закономерно появляется и на этом шаге.
Контрольный ответ - а. с. 400621: при заливке шлака создают покрытие шлаковой пены - при сливании шлак свободно проходит через такую "крышку". Задача впервые решена преподавателем ТРИЗ М. И. Шараповым (Магнитогорск) и широко внедрена в металлургической промышленности.
Шаг 9.1. Для создания крышки используется шлак. Между тем, шлак - изделие, а не инструмент или внешняя среда. Использование шлака для создания крышки оказалось возможным потому, что расход шлака в данном случае ничтожен.
В ТРИЗ давно используется идея введения добавок - небольших управляемых доз вещества. В задаче о шлаке мы сталкиваемся с применением "антидобавок" - изъята и использована небольшая доза изделия. Видимо, это допустимо во всех случаях, когда изделие "безразмерно" (например, если изделие - поток жидкости или газа).
ПРИЛОЖЕНИЕ 2
ЗАДАЧА ОБ ОПЫЛЕНИИ ЦВЕТОВ
СИТУАЦИЯ
При искусственном опылении растений поток воздуха от воздуходувки переносит пыльцу. Но растения в процессе эволюции выработали способность быстро закрывать цветы (смыкать лепестки) при сильном ветре. А слабый ветер плохо переносит пыльцу. Как быть?
РЕШЕНИЕ
Шаг 1.1. Мини-задача. ТС для переноса пыльцы включает воздуходувку, создаваемый ею ветер, цветы (лепестки и пыльцу). ТП-1: сильный ветер хорошо переносит пыльцу, но соединяет лепестки (и пыльца не выходит). ТП-2: слабый ветер не закрывает лепестки, но и не переносит пыльцу. Необходимо при минимальных изменениях в системе обеспечить перенос пыльцы ветром воздуходувки.
Пояснение 1
По примечанию 4 следует заменить термин "ветер". Но ветер - природный элемент, изменяемый по условиям задачи. Поэтому можно сохранить слово "ветер", хотя, строго говоря, его следовало бы заменить словами "поток воздуха" или "поток частиц воздуха".
Шаг 1.2. Конфликтующая пара. Изделие - пыльца и лепестки. Инструмент-ветер (сильный, слабый).
Шаг 1.3. Схемы ТП:
ТП-1: сильный ветер ТП-2: слабый ветер
Шаг 1.4. Выбор ТП. Главная цель системы - перенос пыльцы. Выбираем ТП-1.
Шаг 1.5. Усиление ТП. Будем считать, что вместо "сильного ветра" в ТП-1 действует "очень сильный ветер".
Шаг 1.6. Модель задачи. Даны лепестки, пыльца и очень сильный ветер. Очень сильный ветер хорошо переносит пыльцу, но соединяет лепестки. Необходимо найти такой икс-элемент, который, сохраняя способность сильного ветра переносить пыльцу, обеспечил бы разъединенное положение лепестков.
Шаг 1.7. Применение стандартов
Пояснение 2
Задача решается по стандарту 1.2.4 на устранение вредной связи введением второго поля (механическое поле ветра неуправляемо по условиям задачи, приходится вводить второе поле; введение третьего вещества недопустимо по условиям задачи). Поскольку мы рассматриваем анализ этой учебной задачи именно по АРИЗ, стандарты на этом шаге "отключены".
Шаг 2.1. Оперативная зона. Прилепестковое пространство.
Шаг 2.2. Оперативное время. Т1 - все время действия очень сильного ветра. Т2 - некоторое время до действия ветра.
Шаг 2.3. Вещественно-полевые ресурсы. Воздух в прилепестковом пространстве. Механическое поле сильного ветра.
Шаг 3.1. ИКР-1. Икс-элемент в 03, абсолютно не усложняя систему и не вызывая вредных явлений, обеспечивает в течение 0В несоединение лепестков, сохраняя способность очень сильного ветра переносить пыльцу.
Шаг 3.2. Усиленный ИКР-1. Для усиления ИКР-1 надо "икс-элемент" заменить словами "воздух в 03".
Шаг 3.3. Макро-ФП. Воздух в 03 в течение всего 0В должен быть "ветронепроводящим", чтобы лепестки не соединялись, и должен быть "ветропроводящим", чтобы не мешать переносу пыльцы.
Шаг 3.4. Микро-ФП. Воздух в 03 в течение всего 0В должен содержать силовые частицы, чтобы не пропускать ветер, и не должен содержать силовых частиц, чтобы пропускать пыльцу.
Шаг 3.5. ИКР-2. Силовые частицы воздуха в течение всего 0В должны сами действовать на лепестки и не должны действовать на ветер (т. е. должны отталкивать лепестки друг от друга и не должны отталкивать ветер).
Шаг 3.6. Применение стандартов. См. запись на шаге 1.7 (пояснение 2).
| Шаг 4.1. а) Суть конфликта: в 03 есть только человечки ветра А, которые переносят пыльцу (это хорошо), но вызывают соединение лепестков (это плохо).
|
| б) По правилу 4 надо ввести частицы Б, которые, не мешая частицам А переносить пыльцу, будут мешать им соединять лепестки. Частицы Б должны находиться у лепестков и не должны занимать остальное пространство, чтобы не мешать переносу пыльцы. |
Частицы А создаются воздуходувкой. А откуда возьмутся частицы Б? Взять их можно из ВПР, т. е. из воздуха. Но откуда возникает сила, необходимая для рассоединения лепестков?
По правилу 6 следует разделить частицы Б на Б-1 и Б-2 и получить рассоединяющую силу за счет взаимодействия Б-1 и Б-2. Очевидно, что для этого частицы Б- 1 и Б-2 должны быть заряжены одноименно
Шаг 4.5. Получение частиц. Заряженные частицы Б-1 и Б-2 могут быть получены (по правилу 8) ионизацией воздуха (или влаги, содержащейся в воздухе).
Шаг 5.4. Применение "Указателя физэффектов". Дерзкие формулы творчества. Петрозаводск: Карелия, 1987. С. 140. По таблице: создание сил отталкивания (между лепестками) - применение электростатических сил (раздел 4.2).
Контрольный ответ - а.с. 755247: перед обдуванием (т.е. во время Т2) лепестки раскрывают воздействием электростатического заряда.
ПРИЛОЖЕНИЕ 3
ЗАДАЧА О МАКЕТЕ ПАРАШЮТА
СИТУАЦИЯ
Для изучения вихреобразования макет парашюта (вышки и т. п.) размещают в стеклянной трубе, по которой прокачивают воду. Наблюдение ведут визуально. Однако бесцветные вихри плохо видны на фоне бесцветного потока. Если окрасить поток, наблюдение вести еще труднее: черные вихри совсем не видны на фоне черной воды. Чтобы выйти из затруднения, на макет наносят тонкий слой растворимой краски - получаются цветные вихри на фоне бесцветной воды. К сожалению, краска быстро расходуется. Если же нанести толстый слой краски, размеры макета искажаются, наблюдение лишается смысла. Как быть?
РЕШЕНИЕ
Шаг 1.1. Мини-задача. ТС для наблюдения за вихреобразованием включает прозрачную трубу, поток воды, вихри в потоке воды, макет парашюта, слой растворимой краски на макете. ТП-1: если слой краски тонкий, он не искажает макет, но окрашивает вихри кратковременно. ТП-2: если слой краски толстый, он искажает вихри, но окрашивает их длительное время. Необходимо при минимальных изменениях в системе обеспечить длительные испытания без искажений.
Пояснение 1
По примечанию 4 к шагу 1.1 термин "краска" должен быть заменен словом "вещество, отличное от воды по цвету, прозрачности и другим оптическим свойствам", сокращенно - "другое вещество". Казалось бы, это лишняя игра в слова. На самом деле, заменив "краску" "другим веществом", мы облегчаем путь к формулировке ФП: в потоке воды должно быть неисчерпаемое количество другого вещества и вообще не должно быть другого вещества. Ясно, что функции другого вещества должна выполнять "измененная вода".
Шаг 1.2. Конфликтующая пара. Изделие - вихри и макет. Инструмент - слой (толстый, тонкий) краски на макете.
Шаг 1.3. Схемы ТП:
ТП-1: тонкий слой краски ТП-2: толстый слой краски
Шаг 1.4. Выбор ТП. Главная цель ТС (в условиях данной задачи)- наблюдение, поэтому выбираем ТП-1: нет искажений наблюдаемого объекта.
Шаг 1.5. Усиление ТП. Будем считать, что вместо "тонкого слоя" краски в ТП-1 указан "отсутствующий слой краски".
Шаг 1.6. Модель задачи. Даны вихри в потоке воды, макет и отсутствующий слой краски (на макете). Отсутствующий слой краски не искажает макет, но и не окрашивает вихри. Необходимо найти такой икс-элемент, который, сохраняя способность отсутствующего слоя краски не вносить искажений, обеспечивал бы длительную окраску вихрей.
Шаг 1.7. Применение стандартов. Пояснение 2. Задача решается по стандарту 5.1.1.9. Но мы рассматриваем решение этой задачи именно по АРИЗ, поэтому отсылку к стандартам не принимаем во внимание.
Шаг 2.1. Оперативная зона. Примакетное пространство.
Шаг 2.2. Оперативное время. Т1 - все время наблюдений (неограниченно долго). Т2 - нет.
Шаг 2.3. Вещественно-полевые ресурсы. Вода (это изделие, но воды много).
Шаг 3.1. ИКР-1. Икс-элемент, абсолютно не усложняя систему и не вызывая вредных явлений, обеспечивает длительную окраску вихрей, сохраняя способность отсутствующего слоя краски не искажать макет (и вихри).
Шаг 3.2. Усиленный ИКР-1. Для усиления ИКР-1 необходимо заменить "икс-элемент" словами "вода в 03".
Шаг 3.3. Макро-ФП. В 03 должна быть только вода, чтобы не расходовать краску, и не должно быть воды (должна быть не-вода), чтобы окрашивать вихри в течение 0В.
Шаг 3.4. Микро-ФП. В 03 должны быть только молекулы воды, чтобы краска не расходовалась в течение 0В, и не должно быть молекул воды (должны быть молекулы не-воды), чтобы окрашивать вихри.
Шаг 3.5. ИКР-2. Молекулы воды в 03 должны сами превращаться в молекулы не-воды (краски) и должны оставаться водой, чтобы не расходоваться в течение неограниченно долгого времени.
Здесь уже видно решение: пусть молекулы воды в 03 превращаются в краску; израсходованные молекулы будут замещаться молекулами воды из потока.
Шаг 4.4. Смесь воды с "пустотой" - пузырьки. Их можно использовать вместо краски.
Шаг 4.5. "Пустота" (газ) для образования пузырьков может быть получена электролизом воды (правило 8).
Контрольный ответ. Электролиз. Вместо краски - мелкие пузырьки газа, выделяющиеся на макете-электроде.
ПРИЛОЖЕНИЕ 4
ЗАДАЧА ОБ ОБНАРУЖЕНИИ ЧАСТИЦ
СИТУАЦИЯ
Для многих целей нужны жидкости особой оптической чистоты, содержащие минимальное количество нерастворимых примесей. Крупные частицы можно обнаружить по отражению света. Однако мелкие пылинки (диаметром до 300 ангстрем) известными оптическими методами обнаружить не удается: света (даже лазерного) они отражают слишком мало. Нужен оптический способ, позволяющий определить, есть ли в жидкости мельчайшие пылинки и сколько их. Пылинки немагнитные, сделать их магнитными нельзя.
РЕШЕНИЕ
Шаг 1.1. Мини-задача. ТС для наблюдения частиц, взвешенных в жидкости оптической чистоты, включает жидкость и частицы. ТП-1: если частицы малы, жидкость остается оптически чистой, но частицы невозможно наблюдать невооруженным глазом. ТП-2: если частицы большие, они хорошо наблюдаемы, но жидкость перестает быть оптически чистой, а это недопустимо. Необходимо при минимальных изменениях в системе обеспечить возможность наблюдения частиц невооруженным глазом.
Шаг 1.2. Конфликтующая пара. Изделие - частицы. Инструмент-глаз (это плохой, неменяемый инструмент).
Шаг 1.3. Схемы ТП:
ТП-1: размеры частиц малы ТП-2: размеры частиц велики
Шаг 1.4. Выбор ТП. ТП-2 - это формальное ТП, приведенное в соответствии с примечанием 3. Поэтому и выбор ТП в этой задаче формален: по условиям задачи мы обязаны выбрать ТП-1.
Шаг 1.5. Усиление ТП. Надо увидеть еще более мелкие частицы, например инородные молекулярные включения.
Шаг 1.6. Модель задачи. Даны мельчайшие частицы в жидкости. Мельчайшие частицы, хотя и не портят жидкость, абсолютно невидимы невооруженным глазом. Необходимо ввести икс-элемент, который, не воздействуя вредно на жидкость, делал бы заметными мельчайшие частицы.
Шаг 1.7. Применение стандартов. После формулировки модели задачи суть конфликта свелась к тому, что в систему надо ввести какие-то добавки, и в то же время нельзя вводить ничего. Ясно, что эти добавки должны быть не инородными, а своими - "оптически-жидкостными". "Своя" добавка - это вариация оптической жидкости, получаемой по стандартам 5.1.1.9, 5.5.1. Однако для показа работы АРИЗ мы продолжим анализ по алгоритму.
Шаг 2.1.Оперативная зона. Поверхность мельчайшей частицы и "околочастичное пространство".
Шаг 2.2. Оперативное время. Т1 - время наблюдений, Т2 - время до наблюдений.
Шаг 2.3. Вещественно-полевые ресурсы.
Внутрисистемные ВПР:
глаз
частицы.
Внешнесистемные ВПР:
1. оптическая жидкость.
Надсистемные ВПР:
1. воздух.
Шаг 3.1. ИКР-1. Икс-элемент, абсолютно не усложняя систему и не портя оптической жидкости, в течение 0В (времени наблюдений) в пределах 03 делает частички видимыми.
Шаг 3.2. Усиленный ИКР. Так как инструмент (глаз) неменяем, то по примечанию 24 икс-элемент надо заменить на элемент внешней среды: оптическая жидкость сама делает частицы видимыми.
Шаг 3.3. ФП на макроуровне. Жидкость должна увеличивать частицы, чтобы они были видимыми, и не должна увеличивать частицы, потому что она не обладает такими свойствами по условиям задачи.
Шаг 3.4. Микро-ФП. Оптическая жидкость должна содержать в себе "увеличительные" ("отличительные") частицы, чтобы делать мельчайшие частицы видимыми, и не должна содержать инородных ("увеличительных", "отличительных") частиц, потому что они загрязняют оптическую жидкость.
Шаг 3.5. ИКР-2. 03 (жидкость в "околочастичном" пространстве) в течение 0В (времени наблюдений) должна сама обеспечивать наличие (появление) в себе "увеличительных" частиц, которые после наблюдения должны исчезать.
Шаг 4.5. Производные ВПР. Задача четко решается на этом шаге применением веществ, производных от оптической жидкости. Такими веществами являются "газ оптической жидкости" и "лед оптической жидкости".
Контрольный ответ. Оптическую жидкость импульсно нагревают, получая перегретую жидкость. Мельчайшие частицы в ней играют роль центров закипания, и на них образуются пузырьки. Жидкость находится под небольшим вакуумом, и пузырьки начинают быстро расти. Фотографируя их, получают информацию о самих частицах (Химия и жизнь. 1975. № 4. С. 66). Абсолютный аналог - пузырьковая камера, в которой тоже работает нагретая жидкость.
Теоретически подходит и второй путь - замораживание: мельчайшие частицы будут играть роль центров кристаллизации. Но насколько такие центры наблюдаемы, без экспериментов с конкретными жидкостями сказать трудно.
Пузырьки в жидкости можно получить не только импульсным нагревом - охлаждением, но и импульсным сбросом давления.
ПРИМЕР
А.с. 479030: "Способ определения момента появления твердой микрофазы в жидкостях путем пропускания через жидкость ультразвукового излучения, отличающийся тем, что, с целью повышения точности определения, амплитуду давления пропускаемого излучения выбирают ниже кавитационной прочности жидкости и регистрируют появление твердой микрофазы по возникновению кавитационной области".
ПРИЛОЖЕНИЕ 5
ЗАДАЧА ОБ ОБНАРУЖЕНИИ БАКТЕРИЙ
СИТУАЦИЯ
Для проверки стерильности воды в нее окунают металлическую пластинку, пронизанную множеством мельчайших пор. Затем пластинку извлекают и прикладывают к одной ее стороне "промокашку", которая отсасывает воду с другой (второй) стороны пластинки. На этой, второй, стороне бактерии остаются "на мели" (они не могут пройти сквозь поры). Зафиксировав таким образом "добычу", приступают к "поштучному" подсчету числа пойманных бактерий (это число характеризует степень стерильности воды). Подсчет ведут "построчно" с помощью микроскопов. Операция эта весьма трудоемкая. Как вести анализ в полевых условиях без микроскопа?
РЕШЕНИЕ
Шаг 1.1. Мини-задача. ТС для подсчета числа бактерий включает пористую пластинку и некоторое (неизвестное) количество (3, 5, 10,...) бактерий на одной ее стороне. ТП-1: если бактерии имеют малые размеры, подсчет бактерий затруднителен, но такой случай реален (соответствует природе бактерий). ТП-2: если бактерии имеют большие размеры, подсчет их прост, но такие размеры нереальны. Необходимо при минимальных изменениях в системе обеспечить возможность подсчета бактерий невооруженным глазом.
Пояснение 1
Задача 5 во многом аналогична задаче 4 об обнаружении частиц в жидкости оптической чистоты. Поэтому можно сразу перейти к шагу 5.2.
Шаг 5.2. Задача-аналог - задача об обнаружении частиц в жидкости оптической чистоты. Частицы - в обоих случаях - надо увеличить. В задаче 4 это достигают образованием пузырька вокруг каждой частицы. Но в задаче 5 внешняя среда - воздух. Конечно, можно ввести жидкую среду и использовать способ, описанный при решении задачи 4. Но это потребует сравнительно сложного оборудования, а в задаче 5 речь идет об анализе в полевых условиях. Следовательно, решение задачи 4 надо видоизменить.
При решении задачи 4 частицы "подпитывались" (для роста) имеющейся жидкостью. Замена жидкости, введение в нее посторонних добавок были недопустимы. В задаче 5 "подпитку" бактерий можно вести любой внешней средой.
Контрольный ответ. Бактерии должны сами расти. Для этого необходимо создать питательную внешнюю среду. "Промокашку" смазывают питательным раствором, пластинки (одновременно много пластинок) помещают в термостат. Бактерии быстро размножаются, образуя колонии, видимые невооруженным глазом. Сколько колоний, столько и было бактерий (Изобретатель и рационализатор. 1981. № 5. С. 30).
Таким образом, решение с использованием задачи-аналога получено:
а) более интенсивным изменением внешней среды;
б) переходом с "линии" внешней среды на "линию" изделия.
8-Зд. Обобщение полученного результата.
Суть найденного принципа: для обнаружения частиц, труднодоступных прямому наблюдению, следует увеличить размеры этих частиц за счет их спонтанного роста или образования "чужой" оболочки при действии имеющейся или видоизмененной среды. В задачах 4 и 5 речь идет о частицах примерно одного - микроскопического - размера. Но рассматриваемый принцип применим и при переходе к молекулам, атомам, элементарным частицам, что реализовано, например, в камере Вильсона и пузырьковой камере. А как обстоит дело в макромире, скажем, при обнаружении нейтронных звезд? Нейтронные звезды трудно обнаружить, поскольку они не обладают собственным электромагнитным излучением. Однако нейтронные звезды интенсивно притягивают межзвездное вещество. Объем звезд при этом не возрастает, но, поглощая межзвездную "пыль", звезда отдает энергию в виде рентгеновского излучения, которое может быть обнаружено.
Таким образом, найденный принцип следует пополнить более тонким приемом: объект может быть "увеличен" не только за счет прямого поглощения внешней среды, но и за счет физических явлений, сопровождающих поглощение и проявляющихся уже при относительно небольших изменениях размеров. При этом физэффекты могут быть заранее запрограммированы, если объект, подлежащий наблюдению, допускает введение добавок (см. стандарт 4.1.3). Для природных объектов, не допускающих введения добавок, искомый физэффект может быть получен за счет резонанса ("колебания размеров" - см. стандарт 4.3.2) и переходом к полисистеме (см. стандарт 4.5.1).
...Здесь возможно дальнейшее углубление начинающей образовываться общей теории обнаружения любых объектов в любых средах.
ЛИТЕРАТУРА
Моисеева Н.К.,. Карпунин М.Г. Основы теории и практики ФСА.-М.: Высшая школа, 1988.
Основы ФСА. Под редакцией М.Г. Карпунина и Б.И.Майданчика. М.: Энергия,1980.
ФСА в электротехнической промышленности. Под редакцией М.Г. Карпунина. М., Энергоатомиздат, 1984.
Альтшуллер Г.С., Злотин Б.Л, Зусман А.В., Филатов В.И.. Поиск новых идей: от озарения к технологии. Кишинёв, Картя Молдовеняскэ, 1989.
Альтшуллер Г.С.. Найти идею. Новосибирск, Наука, 1986.
Альтшуллер Г.С., Злотин Б.Л., Филатов В.И. Профессия – поиск нового. Кишинёв, Картя Молдовеняскэ, 1985.
Альтшуллер Г.С.. Творчество как точная наука. М., Советское радио, 1979.
Альтшуллер Г.С.. Алгоритм изобретения. М.: Московский рабочий, 1-е изд. 1969 г., 2-е изд., 1973 г.
Книги серии «Техника – молодёжь – творчество (составитель А.Б. Селюцкий)
Нить в лабиринте;
Правила игры без правил;
Как стать еретиком;
Шанс на приключение;
Дерзкие формулы творчества.
Сайты в интернете
www.trizminsk.org.
www.altshuller.ru.
www.triz.ri-ru.
shop.triz.ri-ru.
matriz.karelia.ru.