Меню
Разработки
Разработки  /  Математика  /  Уроки  /  11 класс  /  Конспект урока по математике "Общие методы решения логарифмических и показательных уравнений"

Конспект урока по математике "Общие методы решения логарифмических и показательных уравнений"

Разработка поможет повторить и расширить сведения об уравнениях и способах их решения.
18.02.2016

Описание разработки

Цель:   

Повторить и расширить сведения об уравнениях и способах их решения;

Формировать умения выполнять обобщения и конкретизацию, правильно отбирать способы решения уравнений;

Развивать качества мышления, гибкость, целенаправленность, рациональность, воспитание чувства ответственности за коллектив в процессе творческой работы.

учить осуществлять исследовательскую деятельность;

продолжить формирование психологической готовности учащихся к применению имеющихся знаний в заданиях ЕНТ.

Воспитывать взаимопомощь, умение слушать товарища; ответственность.

Задачи:

Продолжить работу по формированию умения решать уравнения.

Подготовить к ЕНТ.

Развивать и совершенствовать культуру математического труда, математическую речь.

Воспитывать умение объективно оценивать свои знания (оценивать чужой ответ).

Формировать навыки умственного труда – поиск рациональных путей решения, самообразования, самовоспитания.

Планируемый конечный результат:

Учащиеся знают алгоритмы методов решения уравнений (замена уравнения h(f(x)) =h(g(x)) уравнением f(x) =g(x),метод разложения на множители, метод введения новой переменной.

При решении уравнений аргументировано выбирают наиболее удобный способ решения.

Перечень критериев проверки достижения планируемых результатов:

Конспект урока по математике Общие методы решения логарифмических и показательных уравнений

Знание теоретического материала (умение устно ответить на поставленные вопросы)

Умение решать уравнения различными способами.

Ход урока:

Эпиграф:Мне приходится делить свое время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее, потому, что политика существует только для данного момента, а уравнения будут существовать вечно. Эйнштейн А.

1. Организационный момент:

2. Актуализация опорных знаний. Сегодня на уроке мы с вами повторим основные методы решения уравнений, выполним работу в группах.

С учетом подготовки учащихся возникла необходимость повторения теоретического материала.

Фронтальный опрос проводился по следующим вопросам:

– какие уравнения называются равносильными?

– что можно сказать о корнях равносильных уравнений?

– что называют областью допустимых значений уравнения f(x) = g(x) ?

– какие способы решения уравнений вы знаете?

(Должны прозвучать ответы:

1) два уравнения называются равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

2) корни равносильных уравнений совпадают.

3) областью допустимых значений (ОДЗ) уравнения f(x) = g(x) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения f(x) и g(x).

4) графический метод и аналитический: вынесение общего множителя за скобки, введение новой переменной, сведение к простейшему путем тождественных преобразований.

Учитель: “Когда возникает необходимость в проверке полученных корней уравнения?”

(Должен прозвучать ответ: если при решении уравнения, мы на каком-то шаге выполняем преобразования без учета ОДЗ (вводим новую переменную, возводим в квадрат или четную степень, освобождаемся от знаменателя (умножаем на общий знаменатель), сокращаем на общий множитель.)

Совместно выбираются критерии оценок.

Весь материал - в документе.

Содержимое разработки

Тема: «Общие методы решения показательных и логарифмических уравнений».

Цель:

  • Повторить и расширить сведения об уравнениях и способах их решения;

  • Формировать умения выполнять обобщения и конкретизацию, правильно отбирать способы решения уравнений;

  • Развивать качества мышления, гибкость, целенаправленность, рациональность, воспитание чувства ответственности за коллектив в процессе творческой работы.

  • учить осуществлять исследовательскую деятельность;

  • продолжить формирование психологической готовности учащихся к применению имеющихся знаний в заданиях ЕНТ.

  • Воспитывать взаимопомощь, умение слушать товарища; ответственность.

Задачи:

    • Продолжить работу по формированию умения решать уравнения.

    • Подготовить к ЕНТ.

    • Развивать и совершенствовать культуру математического труда, математическую речь.

    • Воспитывать умение объективно оценивать свои знания (оценивать чужой ответ).

Формировать навыки умственного труда – поиск рациональных путей решения,

самообразования, самовоспитания.

Формы организации познавательной деятельности:

  • фронтальная

  • групповая

Методы обучения:

  • по источнику приобретенных знаний:

  • словесный

  • практический

  • наглядный

  • по уровню познавательной активности:

  • проблемный

  • поисковый


Планируемый конечный результат:

Учащиеся знают алгоритмы методов решения уравнений (замена уравнения h(f(x))=h(g(x)) уравнением f(x)=g(x),метод разложения на множители, метод введения новой переменной.

При решении уравнений аргументировано выбирают наиболее удобный способ решения.


Перечень критериев проверки достижения планируемых результатов:

Знание теоретического материала (умение устно ответить на поставленные вопросы)

Умение решать уравнения различными способами.

Ход урока:

Эпиграф:Мне приходится делить свое время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее, потому, что политика существует только для данного момента, а уравнения будут существовать вечно. Эйнштейн А.

  1. Организационный момент:


  1. Актуализация опорных знаний. Сегодня на уроке мы с вами повторим основные методы решения уравнений, выполним работу в группах.

С учетом подготовки учащихся возникла необходимость повторения теоретического материала.

Фронтальный опрос проводился по следующим вопросам:

– какие уравнения называются равносильными?

– что можно сказать о корнях равносильных уравнений?

– что называют областью допустимых значений уравнения f(x) = g(x)?

– какие способы решения уравнений вы знаете?

(Должны прозвучать ответы:

1) два уравнения называются равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

2) корни равносильных уравнений совпадают.

3) областью допустимых значений (ОДЗ) уравнения f(x) = g(x) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения f(x) и g(x).

4) графический метод и аналитический: вынесение общего множителя за скобки, введение новой переменной, сведение к простейшему путем тождественных преобразований.

Учитель: “Когда возникает необходимость в проверке полученных корней уравнения?”

(Должен прозвучать ответ: если при решении уравнения, мы на каком-то шаге выполняем преобразования без учета ОДЗ (вводим новую переменную, возводим в квадрат или четную степень, освобождаемся от знаменателя (умножаем на общий знаменатель), сокращаем на общий множитель.)

Совместно выбираются критерии оценок.

Критерии

1

2

3

4

Правильность, рациональность решения





Оформление





Презентация





Устная работа





27 баллов – «5»

    1. баллов – «4»

17 -21 баллов – «3»

  1. Устная работа (разминка) (слайд3)

  1. Какое из уравнений линейное?1

  2. Какое уравнение имеет множество корней? 3,4

  3. Какое уравнение имеет не имеет решений? 2

  4. Какое из уравнений не является квадратным? 3

  5. Какое из уравнений является неполным? 1

  6. Найти корни уравнения 2в. 2,3

  7. Какое уравнение решается методом введения новой переменной? 3

  8. Какое уравнение имеет единственный корень? 4

  9. Какое уравнение решается методом разложения на множители? 1

  10. Чему равен корень уравнения 3с?1

  11. Какие уравнения не имеют корней? 1,4

  12. Какое уравнение иррациональное? 2



4.Переформирование групп по уровням.

Учащиеся работают самостоятельно, могут воспользоваться карточками – информаторами разного уровня.

5.Переформирование групп в первоначальный состав.

Учащиеся объясняют членам группы свой метод решения.

6.Презентация решения уравнений.

(Решения для проверки скрыто «шторкой». Работа в программе activInspire)

А: 73x = 343 64х = 4

73x = 73

3x=3

X =1



В: 72x – 10 =3· 7x lg2x – 4lgx – 12 = 0

72x – 3· 7x - 10 = 0

7x = z

Z2 – 3z – 10 = 0

Z1 = 5 z2 = - 2

7x = 5 7x = - 2

X = log7 5 корней нет







С: lg2x = lgx 32х + 2 + 3 = 30

lg2x – lgx = 0

lgx (lgx - 1) = 0

lgx = 0 lgx – 1 = 0

X = 1 lgx = 1

X = 10

Д: lg (x + √5) = - lg (x - √5) log3 (1 – x) = 2

lg (x + √5) + lg (x - √5) = 0

lg((x + √5) · (x - √5)) = 0

lg (x2 - 5) = 0

x2 - 5 = 1

x2 = 6

x1 = √6 x2 = -√6 - посторонний корень



7.Подведение итогов.

д/з:

32х + 2 + 3 = 30

64х = 4

lg2x – 4lgx – 12 = 0

log3 (1 – x) = 2

8.Рефлексия.

  1. Что было интересного?

  2. Что я узнал, чему научился?

  3. Что мне было трудно?

  4. Что ещё хотел бы узнать?






-80%
Курсы повышения квалификации

Геометрия в школе. Технологии активизации познавательной деятельности в условиях реализации ФГОС ООО (СОО)

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Конспект урока по математике "Общие методы решения логарифмических и показательных уравнений" (20.09 КB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт