Радиоактивность – это явление самопроизвольного превращения одних атомных ядер в другие, сопровождаемое испусканием частиц и электромагнитного излучения. Сегодня ряд предприятий используют радиоактивные вещества, в связи с чем, вводится понятие радиационно опасного объекта. Радиационно опасный объект – это объект, на котором используют, хранят, перерабатывают или транспортируют радиоактивные вещества. Именно на таких объектах и происходят радиационные аварии. Радиационная авария – это авария на радиационно опасном объекте, которая приводит к выбросу или выходу радиоактивных продуктов или появлению ионизирующих излучений в количествах, превышающих установленные нормы для данного объекта.
Так вот, что же это за излучения такие и как можно измерить их количество? Ионизирующее излучение – это излучение, которое влечет за собой образование электрических зарядов разных знаков при взаимодействии с окружающей средой. Еще в начале прошлого века, Эрнест Резерфорд доказал, что существует три вида радиоактивных излучений: альфа-, бета- и гамма-излучение. Позднее, когда был открыт нейтрон, выяснилось, что существует еще и нейтронное излучение.
Рассмотрим каждый из видов излучения, не вдаваясь в подробности. Некоторые радиоактивные элементы испускают альфа-лучи. Альфа-лучи, на самом деле, представляют собой поток ядер атомов гелия. Эффект от облучения альфа-частицами напоминает эффект ожога. Альфа-частицы обладают низкой проникающей способностью (всего несколько микрон). Таким образом, они способны поразить только кожу, а защититься от альфа-частиц можно обычной одеждой.
Другие радиоактивные элементы испускают бета-лучи. Бета-лучи, на самом деле, представляют собой поток электронов. Такой поток может проникать на несколько сантиметров, поэтому защититься обычной одеждой от бета-лучей можно лишь частично. Однако, костюм радиационной защиты, который сделан из прорезиненного и просвинцованного материала практически полностью задерживает бета-лучи.
Существуют также некоторые элементы, которые, находясь в особом состоянии, испускают гамма-лучи. Гамма-лучи, действительно являются лучами, а не потоком частиц. Это электромагнитное излучение, обладающее очень высокой проникающей способностью: оно способно пронизывать человека насквозь. От гамма-излучения не спасает даже костюм радиационной защиты – укрыться от этого излучения можно только в бункере (и то, хоть бункер и ослабляет излучение в несколько сотен раз, но полностью от него не защищает).
Наконец, нейтронное излучение представляет собой поток нейтронов, который тоже обладает очень высокой проникающей способностью. Это излучение еще более опасно, поскольку поток нейтронов обладает значительно большей энергией, чем гамма-излучение, а, значит, может нанести больший вред. Спастись от этого излучения можно только в бункере.
Существует несколько основных величин, с помощью которых можно охарактеризовать воздействие радиации количественно. В первую очередь – это поглощённая доза. Поглощённая доза – это отношение ионизирующей энергии, переданной веществу к массе этого вещества. В международной системе единиц измерения СИ, с которой вы знакомы из курса физики, поглощенная доза измеряется в грэях. Один грэй – это поглощённая доза, при которой облучаемому веществу массой один килограмм передается энергия в один джоуль. Существует также и внесистемная единица измерения поглощённой дозы, которая называется рад. От названия этой единицы измерения пошло название приборов, с помощью которых измеряют различные характеристики ионизирующего излучения.
Ещё одной важной величиной является мощность излучения. Мощность излучения характеризует приращение дозы в единицу времени (измеряется в грэях в секунду). Зная мощность излучения, можно вычислить поглощенную дозу при нахождении в радиоактивной зоне в течение того или иного времени.
Необходимо отметить, что внешнее облучение не столь опасно, как внутреннее облучение. Под внутренним облучением понимается воздействие радиации на организм изнутри – когда радиоактивные частицы попали в организм через дыхательные пути, или, например, с пищей.
В этом случае уже альфа-излучение становится значительно более опасным, поскольку обладает огромной энергией, по сравнению, с гамма-лучами. В связи с этим вводится такая величина, как коэффициент качества – это величина, характеризующая эффективность того или иного излучения. Чтобы выразить количественно эффект воздействия радиации на человека, вводится величина, которая называется эквивалентной дозой. Эквивалентная доза определяется как произведение поглощенной дозы и коэффициента качества. Единицей измерения эквивалентной дозы является зиверт. Условно принято считать, что коэффициент качества для гамма-излучения равен единице. Исходя из этого, были подсчитаны коэффициенты качества для других видов излучений. Для бета-лучей, коэффициент качества также равен единице, а вот для альфа-лучей, коэффициент качества составляет двадцать. Для нейтронного излучения коэффициент качества может быть равен трём, семи или десяти (в зависимости от скорости нейтронов).
Доза облучения может быть однократной и многократной. Доза, полученная в первые четверо суток, считается однократной, а если облучение продолжалось в течение более длительного времени, то доза считается многократной.
В чем состоит его опасность радиоактивного излучения. Дело в том, что значительную часть организма человека составляет вода. Радиоактивное излучение ионизирует воду, то есть, способствует появлению в ней электрически заряженных радикалов (подробнее о радикалах вы узнаете из курса химии). Суть в том, что образовавшиеся радикалы влияют на клетки организма самым нежелательным образом. Это может вызвать различные нарушения, заболевания и даже мутацию клеток. Более подробно с радиационными эффектами мы познакомимся в одном из следующих уроков.
Рассмотрим таблицу, в которой приведены поглощенные дозы и соответствующие последствия.
Естественный радиационный фон, хоть и наносит некоторый вред, но не имеет никаких ярко выраженных последствий. Доза в ноль целых двадцать пять сотых грэя считается дозой оправданного риска в чрезвычайных ситуациях. Дозы до одного грэя вызывают не очень значительные изменения и еще могут рассматриваться, как состояние предболезни. Однако, дозы свыше одного грэя вызывают острую лучевую болезнь. Дозы более трех грэй считаются критическими: получившие такую дозу требуют немедленного лечения. Дозы более десяти грэй являются стопроцентно смертельными.
Дозы до одного грэя вызывают незначительные изменения. Но всё же, существует немалый риск различных заболеваний, некоторые из которых приведены в следующей таблице. Вероятность заболевания той или иной болезнью приведена из расчета, что поглощённая доза составляет один грэй. Как видно из таблицы, как минимум у одного из тысячи облученных людей выявляются те или иные последствия облучения даже при дозе в один грэй, не говоря уже о больших дозах.
Следует отметить, что биологическое действие радиации совершенно неощутимо человеком.
Вы можете находиться в зоне с радиационным фоном в десятки раз превышающим естественный, и при этом ничего не чувствовать. Дело в том, что скрытый период действия радиации может быть достаточно продолжительным. Кроме того, полученные дозы облучения имеют свойство накапливаться в организме, из-за чего, постепенно увеличивается вероятность заболевания. Также, различные органы обладают различной чувствительностью к радиации – об этом подробнее мы поговорим позже.
На сегодняшний день, люди получают основную дозу радиации в повседневной жизни (если, конечно, речь не идет об аварии). Дело в том, что большую часть времени люди проводят в зданиях, которые построены из строительных материалов, содержащих естественные радиоактивные источники.
Например, бетон или кирпич содержат в себе радон. Также радон исходит из земной коры, внося большой вклад в естественный радиационный фон. Он проникает в здания через трещины, пустоты, а также может попасть в дом с водой. В силу того, что радон в семь с половиной раз тяжелее воздуха, он скапливается в подвалах, но обнаружить его без специальных приборов довольно сложно, так как радон не имеет ни цвета, ни запаха. Таким образом, вы ежедневно получаете некоторую дозу радиации, которая постепенно накапливается в организме. Но, не пугайтесь: хоть с этим и ничего не поделаешь, всё же, доза естественного облучения довольно мала и не представляет собой прямой угрозы для жизни и здоровья человека.
Итоги урока:
· Существует четыре основных вида ионизирующих излучений: альфа-излучение, бета-излучение, гамма-излучение и нейтронное излучение.
· Альфа-излучение представляет собой поток ядер атомов гелия. Данное излучение обладает низкой проникающей способностью, поэтому от него легко защититься обычной одеждой.
· Бета-излучение – это поток электронов. Данное излучение обладает более высокой проникающей способностью, чем альфа-лучи. Для защиты от такого излучения требуется специальный костюм.
· Гамма-лучи представляют собой электромагнитное излучение, с очень высокой проникающей способностью. От этого излучения могут спасти толстые бетонные или свинцовые перекрытия (то есть, требуется специальное укрытие).
· Нейтронное излучение представляет собой поток нейтронов с очень высокой проникающей способностью. Уберечься от такого излучения можно только в специальном бункере (и то частично). На следующем уроке мы охарактеризуем очаги поражения при радиационных авариях, а также познакомимся с принципами защиты.