Меню
Видеоучебник
Видеоучебник  /  Физика  /  8 класс  /  Физика 8 класс (ФГОС)  /  Зависимость силы тока от напряжения. Сопротивление

Зависимость силы тока от напряжения. Сопротивление

Урок 26. Физика 8 класс (ФГОС)

На этом уроке мы узнаем, какая зависимость существует между силой тока и напряжением на участке цепи. Познакомимся с новой физической величиной — электрическим сопротивлением. Выясним, что принимают за единицу сопротивления проводника. А также попытаемся объяснить, почему вообще проводник обладает сопротивлением.
Плеер: YouTube Вконтакте

Конспект урока "Зависимость силы тока от напряжения. Сопротивление"

На прошлых уроках мы с вами познакомились с понятиями «сила электрического тока» и «напряжение». Давайте вспомним, что силой тока называется физическая величина, численно равная электрическому заряду, протекающему через поперечное сечение проводника за единицу времени.

Напряжение — это физическая величина, характеризующая работоспособность электрического поля.

Таким образом, сила тока и напряжение характеризуют электрический ток и его действия. Значит, сила тока должна каким-то образом зависеть от напряжения. Давайте установим эту зависимость. Для чего воспользуемся установкой, представленной на рисунке.

В качестве потребителя тока в цепи используется резистор — это металлический проводник в виде спирали. Параллельно резистору подключён вольтметр, измеряющий напряжение на этом участке цепи. Остальная часть цепи состоит из источника тока, ключа и амперметра. В качестве источника тока будем использовать устройство, которое позволяет регулировать напряжение на концах проводника.

 Будем изменять напряжение на резисторе и следить за соответствующими изменениями силы тока в цепи, а все измерения заносить в таблицу:

Уже из этих данных следует, что сила тока в проводнике прямо пропорциональна напряжению на проводнике: I ~ U.

Подключим теперь к источнику тока другую спираль, например, спираль осветительной лампы и повторим опыт.

Как видим, при тех же значениях напряжения, что и в первом случае, мы получили другие значения силы тока. Однако и в этом проводнике сила тока прямо пропорциональна напряжению.

Наблюдаемую нами зависимость силы тока в проводнике от напряжения между концами этого проводника можно изобразить графически. На таком графике в условно выбранном масштабе по оси абсцисс откладывается напряжение, а по оси ординат — сила тока.

Такой график в физике называют вольт-амперной характеристикой проводника.

Теперь, по результатам проведённых опытов, вычислим отношение напряжения к силе тока для каждого из измерений:

Как видим, оно постоянно для каждого из проводников, но имеет разное значение для разных проводников.

Следовательно, существует физическая величина, характеризующая свойства проводника, по которому течёт электрический ток. Эту величину называют электрическим сопротивлением проводника или просто сопротивлением. Обозначают сопротивление латинской буквой R.

За единицу сопротивления принимают ом. Она получила своё название в честь немецкого учёного Г. Ома, открывшего основной закон электрической цепи.

1 Ом — это сопротивление проводника, в котором при напряжении 1 В проходит ток силой 1 А.

Это небольшое сопротивление. У спиралей обычных электроламп оно составляет сотни ом, поэтому сопротивление часто выражают в кратных единицах:

Попытаемся теперь объяснить, почему проводник обладает электрическим сопротивлением. Вспомните, что электрический ток в металлах представляет собой направленное движение свободных электронов. Движущиеся под действием электрического поля электроны взаимодействуют с атомами и ионами кристаллической решётки металла. Следовательно, атомы и ионы препятствуют движению электронов, то есть оказывают сопротивление их движению. Это ведёт к уменьшению скорости направленного движения электронов, а значит, и силы тока в проводнике.

Электрическое сопротивление можно сравнить с трением, которое всегда препятствует движению. Как мы знаем, любое тело быстрее скатится с гладкой поверхности, чем с шершавой.

Подобно этому, электроны в плохом проводнике двигаются медленнее, чем в хорошем. В диэлектриках, электрическое сопротивление бесконечно большое, поэтому они и не проводят ток.

Таким образом, новая величина — сопротивление — отражает противодействие среды движению в ней свободных носителей заряда. В соединительных проводах это противодействие, как правило, незначительно, что позволяет сопротивлением соединительных проводов при решении большинства задач пренебречь.

Определённым сопротивлением обладают и измерительные приборы. При включении последовательно в цепь амперметра его сопротивление добавляется к полному сопротивлению цепи. Это вызывает нежелательное уменьшение силы тока. Чтобы этого не случилось, сопротивление амперметра должно быть мало́. Идеальным был бы амперметр без сопротивления. Именно таким мы и будем считать сопротивление амперметра в задачах.

Наоборот, добавление вольтметра параллельно некоторому прибору создаёт току ещё один «обходной» путь, что также резко изменяет параметры цепи. Чтобы избежать этих нежелательных последствий, надо применять вольтметры с максимально больши́м сопротивлением.

И ещё об очень важном. При слишком малом сопротивлении цепи сила тока в ней может принять недопустимо большое значение. При замыкании цепи, представленной на рисунке, ток в ней пройдёт, фактически не испытывая сопротивления. Это — короткое замыкание.

В таком режиме могут быть испорчены и прибор, и источник тока, а перегрев проводов может привести к пожару.

Пример решения задачи.

Задача. Когда напряжение увеличили на 3 В, сила тока в цепи возросла вдвое, и ток за 1 с совершил работу 3 Дж. Найдите значения силы тока после увеличения напряжения.

8339

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт