Меню
Тесты
Тесты  /  Алгебра  /  10 класс  /  Суммативное оценивание за раздел «Применение производной», ЕМН, 10 класс

Суммативное оценивание за раздел «Применение производной», ЕМН, 10 класс

Avatar
05.05.2020. Тест. Алгебра, 10 класс
Внимание! Все тесты в этом разделе разработаны пользователями сайта для собственного использования. Администрация сайта не проверяет возможные ошибки, которые могут встретиться в тестах.
Знать необходимое и достаточное условие возрастания (убывания) функции на интервале; находить промежутки возрастания (убывания) функции; знать определения критических точек и точек экстремума функции, условие существования экстремума функции; знать определение точки перегиба графика функции и необходимое и достаточное условие выпуклости вверх (вниз) графика функции на интервале; исследовать свойства функции с помощью производной и строить её график; решать прикладные задачи, связанные с нахождением наибольшего (наименьшего) значения функции.

Список вопросов теста

Вопрос 1

Дана функция f (x ) = x3 – 9х . Найдите область ее определения.

Выберите правильный ответ:

1. D(f) = R / \(\left\{0\right\}\)

2. D(f) = R

3. D(f) = \(\left\{0\right\}\)

Варианты ответов
  • 1
  • 2
  • 3
Вопрос 2

Исследуйте на четность функцию f (x ) = x3 – 9х . 

Варианты ответов
  • Функция четная
  • Функция нечетная
  • Функция общего вида
Вопрос 3

Исследуйте на периодичность функцию f (x ) = x3 – 9х . 

Варианты ответов
  • Не периодическая
  • Периодическая
  • Затрудняюсь ответить
Вопрос 4

Дана функция f (x ) = x3 – 9х . Найдите нули этой функции.

Выберите правильный ответ:

1. х = \(\pm\ 3\)

2. х = 0, х = 3

3. х = 0, х = \(\pm3\)

Варианты ответов
  • 1
  • 2
  • 3
Вопрос 5

Дана функция f (x ) = x3 – 9х. Найдите промежутки монотонности данной функции.

Выберите правильный ответ:

1. функция возрастает при x \(\in\) ( - \(\infty\) ; - \(\sqrt{3}\)\(\cup\)\(\sqrt{3}\); + \(\infty\)), функция убывает при x \(\in\)( - \(\sqrt{3}\)\(\sqrt{3}\))

2. функция убывает при x \(\in\) ( - \(\infty\) ; - \(\sqrt{3}\)\(\cup\)\(\sqrt{3}\); + \(\infty\)), функция возрастает при x \(\in\)( - \(\sqrt{3}\)\(\sqrt{3}\))

3. Функция монотонно возрастает

Варианты ответов
  • 1
  • 2
  • 3
Вопрос 6

Дана функция f (x ) = x3 – 9х. Определите промежутки знакопостоянства данной функции.

Выберите правильный ответ:

1. y > 0 при х \(\in\) ( - \(\infty\) ; - 3) \(\cup\)  ( 0 ; 3),  y < 0 при х \(\in\) ( - 3 ; 3)

2. y < 0 при х \(\in\) ( - \(\infty\) ; - 3) \(\cup\)  ( 0 ; 3),  y > 0 при х \(\in\) ( - 3 ; 3)

3. y < 0 при х \(\in\) ( - \(\infty\) ; - 3) \(\cup\)  ( 0 ; 3),  y > 0 при х \(\in\) ( - 3 ; 0)  \(\cup\) ( 3 ; + \(\infty\) )

 

Варианты ответов
  • 1
  • 2
  • 3
Вопрос 7

Дана функция f (x ) = x3 – 9х. Найдите точки экстремума данной функции.

Выберите правильный ответ:

1. хmin = - \(\sqrt{3}\) ; xmax = \(\sqrt{3}\)

2. хmax = - \(\sqrt{3}\) ; xmin = \(\sqrt{3}\)

3. xmin = - 3; xmax = 3

Варианты ответов
  • 1
  • 2
  • 3
Вопрос 8

Дана функция f (x ) = x3 – 9х. Найдите промежутки знакопостоянства данной функции.

Выберите правильный ответ:

1. y > 0 при х \(\in\) ( - \(\infty\) ; - 3 ) \(\cup\) ( 0 ;  3 );  y < 0 при х \(\in\) ( - 3 ; 0)

2. y < 0 при х \(\in\) ( - \(\infty\) ; - 3 ) \(\cup\) ( 0 ;  3 );  y > 0 при х \(\in\) ( - 3 ; 0)

3. y < 0 при х \(\in\) ( - \(\infty\) ; - 3 ) \(\cup\) ( 0 ;  3 );  y > 0 при х \(\in\) ( - 3 ; 0) \(\cup\) ( 3 ; + \(\infty\))

Варианты ответов
  • 1
  • 2
  • 3
Вопрос 9

Дана функция f (x ) = x3 – 9х. Определите точку перегиба данной функции.

Варианты ответов
  • х = 0
  • х = 3
  • х = - 3
Вопрос 10

Дана функция f(x) = x3 - 9x. Какой из рисунков является эскизом графика данной функции:

Варианты ответов
  • рис.1
  • рис. 2
  • рис. 3
Вопрос 11

Каковы должны быть стороны прямоугольника, периметр которого равен 120 м, чтобы площадь этого участка была наибольшей?

Варианты ответов
  • 30 м. и 30 м.
  • 40 м. и 20 м.
  • 50 м. и 10 м.
Пройти тест
Сохранить у себя:

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт