ОГЭ. 21. Текстовые задачи. Тест №1
Список вопросов теста
Вопрос 1
Свежие фрукты содержат 86% воды, а высушенные —— 23%. Сколько сухих фруктов получится из 341 кг свежих фруктов?
Вопрос 2
Свежие фрукты содержат 79% воды, а высушенные —— 16%. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?
Вопрос 3
Моторная лодка прошла против течения реки 297 км и вернулась в пункт отправления, затратив на обратный путь на 3 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 2 км/ч.
Вопрос 4
Два велосипедиста одновременно отправляются в 60-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Вопрос 5
Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 180 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?
Вопрос 6
Поезд, двигаясь равномерно со скоростью 93 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям по платформе со скоростью 3 км/ч, за 24 секунды. Найдите длину поезда в метрах.
Вопрос 7
Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 209 км. На следующий день он отправился обратно в А, увеличив скорость на 8 км/ч. По пути он сделал остановку на 8 часов, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста
на пути из В в А.
Вопрос 8
Поезд, двигаясь равномерно со скоростью 57 км/ч, проезжает мимо пешехода, идущего по платформе параллельно путям со скоростью 3 км/ч навстречу поезду, за 36 секунд. Найдите длину поезда в метрах.
Вопрос 9
Первая труба пропускает на 15 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 100 литров она заполняет на 6 минут быстрее, чем первая труба?
Вопрос 10
Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55 % кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61 % кислоты. Сколько процентов кислоты содержится в первом растворе?


