19-21 задачи ЕГЭ часть 3
Список вопросов теста
Вопрос 1
Вопрос 2
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или два камня или увеличить количество камней в куче в два раза. Например, имея кучу из 10 камней, за один ход можно получить кучу из 11, 12 или 20 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 35. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 35 или больше камней.
В начальный момент в куче было S камней, 1 ≤ S ≤34.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Задание 19.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
Задание 20.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
Задание 21.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Вопрос 3
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в любую кучу один камень или добавить добавить в любую кучу столько камней, сколько их в данный момент в другой куче. Игра завершается в тот момент, когда общее количество камней в двух кучах становится не менее 81. Победителем считается игрок, сделавший последний ход. В начальный момент в первой куче было 7 камней, а во второй – S камней, 1 ≤ S ≤ 73.
Ответьте на следующие вопросы:
Вопрос 1. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Назовите минимальное значение S, при котором это возможно.
Вопрос 2. Найдите минимальное и максимальное значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
− Петя не может выиграть за один ход;
− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания СЛИТНО БЕЗ ПРОБЕЛОВ.
Вопрос 3. Найдите значение S, при котором одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Вопрос 4
Два игрока, Петя и Ваня, играют в следующую игру. У игроков есть табличка, на которой записана пара неотрицательных целых чисел. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может заменить любое число на сумму обоих чисел. Так, например, если перед ходом игрока была позиция (3, 5), то после его хода будет позиция (8, 5) или (3, 8). Игра завершается в тот момент, когда сумма чисел пары становится не менее 45. Победителем считается игрок, сделавший последний ход.
Ответьте на следующие вопросы:
Вопрос 1. Известно, что игра началась в позиции (7, S), при этом Ваня одержал победу после неудачного хода Пети. Укажите минимальное значение S, при котором это возможно.
Вопрос 2. Найдите значения S, при которых Петя при правильной игре гарантированно выигрывает своим вторым ходом из позиции (6, S). В качестве ответа укажите сначала минимальное, затем максимальное значение СЛИТНО БЕЗ ПРОБЕЛОВ.
Вопрос 3. Известно, что при игре из позиции (S, S) Ваня гарантированно выигрывает своим вторым ходом при любой игре Пети. Найдите минимальное значение S, при котором это возможно.
Вопрос 5
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит три кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч 3, 13 или 23 камня. Игра завершается в тот момент, когда в сумме в кучах будет не менее 73 камней. Победителем считается игрок, сделавший последний ход. В начальный момент в кучах было (2, S, 2S) камней, 1 ≤ S ≤ 23.
Ответьте на следующие вопросы:
Вопрос 1.При некотором значении S Ваня одержал победу свои первым ходом после неудачного хода Пети. Укажите минимальное значение S, при котором это возможно.
Вопрос 2. Найдите минимальное и максимальное значения S, при которых Петя выигрывает вторым ходом при любом ходе Вани. Запишите ответ СЛИТНО БЕЗ ПРОБЕЛОВ.
Вопрос 3. Найдите два значения S, при которых выигрышная стратегия есть у Вани, но Петя может выбрать, каким ходом выиграет Ваня – первым или вторым. Запишите ответ СЛИТНО БЕЗ ПРОБЕЛОВ.
Вопрос 6
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат три кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) три камня или увеличить количество камней в куче в два раза. Например, пусть в первой куче 10 камней, во второй 7, а в третьей 4 камня; такую позицию в игре будем обозначать (10, 7, 4). Тогда за один ход можно получить любую из шести позиций: (13, 7, 4), (20, 7, 4), (10, 10, 4), (10, 14, 4), (10, 7, 7), (10, 7, 8). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 71. Победителем считается игрок, сделавший последний ход, т. е. первым получивший такую позицию, что в кучах всего будет 71 или больше камней. В начальный момент в первой куче было семь камней, во второй куче пять камней, в третьей куче – S камней; 1 ≤ S ≤ 58.
Ответьте на следующие вопросы:
Вопрос 1.При некотором значении S Ваня одержал победу свои первым ходом после неудачного хода Пети. Укажите минимальное значение S, при котором это возможно.
Вопрос 2. Найдите минимальное и максимальное значения S, при которых Петя выигрывает вторым ходом при любом ходе Вани. Запишите ответ СЛИТНО БЕЗ ПРОБЕЛОВ.
Вопрос 3. Найдите значение S, при котором одновременно выполняются два условия: а) у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; б) у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Вопрос 7
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может убрать из одной из куч один камень или уменьшить количество камней в куче в два раза (если количество камней в куче нечётно, остаётся на 1 камень больше, чем убирается). Например, пусть в одной куче 6, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (5, 9), (3, 9), (6, 8), (6, 5). Игра завершается в тот момент, когда суммарное количество камней в кучах становится не более 32. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 32 или меньше камней. В начальный момент в первой куче было 10 камней, во второй куче – S камней, S > 22.
Задание 19.
Найдите значение S, при котором Ваня выигрывает своим первым ходом при любой игре Пети.
Задание 20.
Для игры, описанной в задании 19, найдите минимальное и максимальное значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
− Петя не может выиграть за один ход;
− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания СЛИТНО БЕЗ ПРОБЕЛОВ.
Задание 21.
Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Вопрос 8
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча, состоящая из S конфет. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может съесть не более пяти, но не менее одной конфеты или съесть половину конфет, если число конфет четное. Съесть можно только целое количество конфет. Игра завершается в тот момент, когда в куче останется менее десяти конфет. Победителем считается игрок, который сделал последний ход.
Задание 19.
Укажите значение S, при котором Ваня выиграет первым ходом при любой игре Пети.
Задание 20.
Для игры, описанной в задании 19, укажите минимальное и максимальное S, при которых Петя не может выиграть первым ходом, но может выиграть вторым ходом при любом ходе Вани. Найденные значения запишите в ответе в порядке возрастания СЛИТНО БЕЗ ПРОБЕЛОВ.
Задание 21.
Для игры, описанной в задании 19, укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.