19-21 задачи ЕГЭ часть 2
Список вопросов теста
Вопрос 1
Вопрос 2
Задание 19.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом удвоение разрешено выполнять, только если в куче в данный момент нечётное число камней.
Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 4 камней (добавил один камень), то следующим ходом Ваня может получить 5 или 6 камней. Получить 8 камней Ваня не может, так как нельзя удваивать кучу с чётным числом камней.
Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 22 Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 22 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 21
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите такое значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Пети, но у Вани нет стратегии, которая позволяла бы ему гарантированно выиграть первым ходом.
Задание 20.
Для игры, описанной в задании 19, укажите два значения S, при которых Петя не может выиграть за один ход, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом.
В ответе запишите найденные значения в порядке возрастания слитно: сначала меньшее, затем большее.
Задание 21.
Для игры, описанной в задании 19, найдите наименьшее значение S, при котором у Пети есть выигрышная стратегия, позволяющая ему выиграть третьим ходом при любой игре Вани, но у Пети нет стратегии, которая позволяла бы ему гарантированно выиграть первым или вторым ходом.
Вопрос 3
Задание 19.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может
а) добавить в кучу два камня;
б) увеличить количество камней в куче в три раза.
Игра завершается в тот момент, когда количество камней в куче становится не менее 50. Если при этом в куче оказалось не более 119 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник, при этом считается, что противник сделал свой ход. В начальный момент в куче было S камней, 1 ≤ S ≤ 49.
Найдите количество значений S, при которых Ваня выигрывает своим первым ходом при любой игре Пети.
Задание 20.
Найдите минимальное значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
− Петя не может выиграть за один ход;
− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Задание 21.
Найдите минимальное и максимальное значения S, при которых одновременно выполняются два условия:
– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Найденные значения запишите в ответе в порядке возрастания слитно.
Вопрос 4
Задание 19:
Два игрока, Петя и Ваня, играют в следующую игру. У игроков есть табличка, на которой записана пара неотрицательных целых чисел. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может заменить любое число на сумму обоих чисел.
Так, например, если перед ходом игрока была позиция (3, 5), то после его хода будет позиция (8, 5) или (3, 8). Игра завершается в тот момент, когда сумма чисел пары становится не менее 44.
Укажите минимальное значение S, при котором Петя может выиграть своим первым ходом из позиции (11, S).
Задание 20.
Для условия игры из задания 19, ответьте на вопрос.
Найдите минимальное значение S, когда при игре из позиции (11, S) Ваня выигрывает первым ходом независимо от игры Пети.
Задание 21.
Для условия игры из задания 19, ответьте на вопрос.
Известно, что разница между написанными на карточке числами минимальная. Укажите два значения – числа на карточке в порядке возрастания – при которых Петя имеет выигрышную стратегию в два хода. Если таких пар несколько, укажите ту, сумма значений в которой минимальная. Ответ пишите слитно
Вопрос 5
Задание 19:
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 231. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах будет 231 или больше камней.
В начальный момент в первой куче было 17 камней, во второй куче – S камней; 1 ≤ S ≤ 213.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
Задание 20.
Известно, что Петя имеет выигрышную стратегию.
Укажите минимальное и максимальное значения слитно при которых:
· Петя не может победить первым ходом
· при любом ходе Вани Петя побеждает своим вторым ходом
Задание 21.
Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:
- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Если найдено несколько значений S, в ответе запишите минимальное из них.


