Меню
Разработки
Разработки  /  Информатика  /  Практикумы  /  11 класс  /  Решение задания 18 егэ по информатике с помощью таблиц истинности

Решение задания 18 егэ по информатике с помощью таблиц истинности

В статье представлены материалы, предназначенные для использования учителями информатики при подготовке учащихся к ЕГЭ по информатике.

К сожалению, правильно решают задание 18 ЕГЭ по информатике малая часть учащихся. Это связано с тем, что предлагаются различные способы решения этого задания, но эти способы применимы только на некотором сегменте заданий.

В представленных вашему вниманию материалах четыре различных типа задач решаются с помощью составления таблиц истинности. Все задачи выбраны из заданий для тренировки с известного сайта К. Ю. Полякова[1].

21.11.2017

Содержимое разработки

Л. И. Мазничевская

средняя общеобразовательная школа № 763, Москва

Решение задания 18 ЕГЭ ПО ИНФОРМАТИКЕ С ПОМОЩЬЮ ТАБЛИЦ ИСТИННОСТИ

Аннотация

В статье представлены материалы, предназначенные для использования учителями информатики при подготовке учащихся к ЕГЭ по информатике.

К сожалению, правильно решают задание 18 ЕГЭ по информатике малая часть учащихся. Это связано с тем, что предлагаются различные способы решения этого задания, но эти способы применимы только на некотором сегменте заданий.

В представленных вашему вниманию материалах четыре различных типа задач решаются с помощью составления таблиц истинности. Все задачи выбраны из заданий для тренировки с известного сайта К. Ю. Полякова[1].

Ключевые слова: информатика, таблица истинности, алгоритм, законы алгебры логики, импликация.

Контактная информация

Мазничевская Лариса Ивановна, учитель информатики высшей категории, государственное бюджетное общеобразовательное учреждение города Москвы “Школа № 763”, адрес: 129346, г. Москва, ул. Стартовая, д. 27, к. 3; телефон: (495) 474-90-60; e-mail: mli[email protected]inbox.ru

При решении любого задания 18 ЕГЭ по информатике необходимо знать основные понятия и законы математической логики, а также выполнить следующие шаги алгоритма:

  • определение элементарных высказываний

  • замена переменных (при необходимости)

  • раскрытие импликации или эквивалентности

  • преобразование с использованием законов алгебры логики

  • построение таблиц истинности

  • запись ответа.

Задача 1(105 Поляков)

На числовой прямой даны два отрезка: P = [44; 49] и Q = [28; 53]. Укажите наибольшую возможную длину такого отрезка A, что формула

тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

Решение:

Введем обозначения и упростим выражение:

=P Q

Вся числовая ось распадается на интервалы, построим таблицу истинности для одного из значений заданного интервала для полученной формулы

Интервал

Значение Х

P

Q



А

Итог

(-;28]

20

0

0

1

0

1

[28;44]

30

0

1

любое

любое

1

[44;49]

48

1

1

любое

любое

1

[49;53]

50

0

1

любое

любое

1

[53;+]

54

0

0

1

0

1

Так как нам нужна наибольшая возможная длина такого отрезка A, чтобы формула

была тождественно истинна, то есть принимала значение 1 при любом значении переменной х, то А принимает значение истинно на [28;53], длина этого отрезка равна 53-28=25

Ответ: 25

Задача 2(135 Поляков)

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа А формула

ДЕЛ(x, A)  (ДЕЛ(x, 14)  ДЕЛ(x, 21))

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?


Решение:

Упростим выражение:

ДЕЛ(x, A)  (ДЕЛ(x, 14)  ДЕЛ(x, 21))=  ДЕЛ(x, A) ДЕЛ(x, 14)  ДЕЛ(x, 21)

Определим числа, входящие во множество ДЕЛ(x, 14) и ДЕЛ(x, 21): 14, 21, 28, 42, 56,63…

Построим таблицу истинности для формулы  ДЕЛ(x, A) ДЕЛ(x, 14)  ДЕЛ(x, 21)

Число Х

ДЕЛ(x, 14)

ДЕЛ(x,21)

ДЕЛ(x, 14)  ДЕЛ(x, 21)

Х не кратно А

А

Итог

14

1

0

0

1

0

1

21

0

1

0

1

0

1

28

1

0

0

1

0

1

42

1

1

1

любое

любое

1

56

1

0

0

1

0

1

Необходимо выбрать первое значение А, при котором высказывание «Х не кратно А»может принимать любое значение Х=42, оно является наименьшим.

Ответ: 42

Задача 3(150 Поляков)

Введём выражение M & K, обозначающее поразрядную конъюнкцию M и K (логическое «И» между соответствующими битами двоичной записи). Определите наименьшее натуральное число A, такое что выражение

(X & 56  0)  ((X & 48 = 0)  (X & A  0))

тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной X)?

Решение:

Для удобства введем обозначения и упростим выражение

56= X & 56  0

48=X & 48  0

A= X & A  0

(X & 56  0)  ((X & 48 = 0)  (X & A  0))=56  ( 48  A ) = А

Переведем в двоичную систему счисления числа 18, 54

5610=1110002

4810=1100002

Искомое число х – разрядное слагаемое двоичной системы счисления из множества {1, 2, 4,8,16,32}. Построим таблицу истинности


Число Х, его двоичный код

X & 56 = 0

1110002

X & 48  0

1100002

А

X & A  0

Итог

1, 000001

1

0

Любое(0 или1)

1

2, 000010

1

0

Любое(0 или1)

1

4, 000100

1

0

Любое(0 или1)

1

8, 001000

0

0

1

1

16, 010000

0

1

Любое(0 или1)

1

32, 100000

0

1

Любое(0 или1)

1


Из таблицы х=8, оно является наименьшим

Ответ: 8

Задача 4(88 Поляков)

Элементами множества А являются натуральные числа. Известно, что выражение

(x {2, 4, 6, 8, 10, 12}) → (((x {3, 6, 9, 12, 15})  ¬(x A)) → ¬(x {2, 4, 6, 8, 10, 12}))

истинно (т. е. принимает значение 1) при любом значении переменной х. Определите наименьшее возможное значение суммы элементов множества A.

Решение:

Для удобства введем обозначения и упростим выражение


В=x {2, 4, 6, 8, 10, 12}

С= x {3, 6, 9, 12, 15}

А= x A

(x {2, 4, 6, 8, 10, 12}) → (((x {3, 6, 9, 12, 15})  ¬(x A)) → ¬(x {2, 4, 6, 8, 10, 12}))=B→((C ¬A) → ¬B) = ¬B((C ¬A) → ¬B)= ¬B¬C ¬A) ¬B= ¬B¬C

Построим таблицу истинности

Число Х

¬B

¬C

A

Итог

2

0

1

любое(0 или1)

1

3

1

0

любое(0 или1)

1

4

0

1

любое(0 или1)

1

6

0

0

1

1

8

0

1

любое(0 или1)

1

9

1

0

любое(0 или1)

1

10

0

1

любое(0 или1)

1

12

0

0

1

1

15

1

0

любое(0 или1)

1










6+12=18

Ответ: 8

Литература


  1. http://kpolyakov.spb.ru/school/probook.htm

-80%
Курсы повышения квалификации

Организация и сопровождение олимпиадной деятельности учащихся

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Решение задания 18 егэ по информатике с помощью таблиц истинности (84 KB)