Меню
Разработки
Разработки  /  Алгебра  /  Разное  /  Прочее  /  Пособие по теме Свойства функции

Пособие по теме Свойства функции

Методическое пособие предназначено для повторения теоретических и практических знаний по теме. Цель пособия – повторить понятия: функции, видов функций, способы задания функции, основные свойства функций, графики функций и подготовится к занятию по теме «Свойства функции». Данное пособие рекомендовано для студентов первого курса специальности 34.02.01 Сестринское дело. Пособие содержит определения, свойства и формулы по теме: Свойства функции, тест для самоконтроля и ключи к тесту. Пособие направлено на формирование навыков самостоятельной работы с учебным материалом, формирование навыков решения задач, формирование и развитие творческого потенциала, повышение интереса к дисциплине.
20.01.2020

Содержимое разработки

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ НОВОСИБИРСКОЙ ОБЛАСТИ «КУПИНСКИЙ МЕДИЦИНСКИЙ ТЕХНИКУМ»








МЕТОДИЧЕСКОЕ ПОСОБИЕ

Для самостоятельной работы студентов

По дисциплине: МАТЕМАТИКА(включая алгебру и начала математического анализа; геометрию)

Тема: «Свойства функции»

Специальность: 34.02.01 Сестринское дело Курс: 1

(базовой подготовки)











Купино

2020

Рассмотрено на заседании предметной цикловой

Методической комиссии по общеобразовательным дисциплинам,

общему гуманитарному и социально-экономическому, математическому и

естественно-научному циклу

Протокол № _____ от «_____» _________20____г.








Автор – составитель: преподаватель математики высшей категории Тюменцева О.Н.
















Купино

2020 г

Пояснительная записка к методическому пособию

Методическое пособие предназначено для повторения теоретических и практических знаний по теме.

Цель пособия – повторить понятия: функции, видов функций, способы задания функции, основные свойства функций, графики функций и подготовится к занятию по теме «Свойства функции».

Данное пособие рекомендовано для студентов первого курса специальности 34.02.01 Сестринское дело. Пособие содержит определения, свойства и формулы по теме: Свойства функции, тест для самоконтроля и ключи к тесту.

Пособие направлено на формирование навыков самостоятельной работы с учебным материалом, формирование навыков решения задач, формирование и развитие творческого потенциала, повышение интереса к дисциплине.


















Свойства функции

Основные свойства функции.

1. Четность и нечетность

Функция называется четной, если
      – область определения функции симметрична относительно нуля
      – для любого х из области определения f(-x) = f(x)

График четной функции симметричен относительно оси 0y

Функция называется нечетной, если
      – область определения функции симметрична относительно нуля
      – для любого х из области определения f(-x) = –f(x)

График нечетной функции симметричен относительно начала координат.

2.Периодичность

Функция f(x) называется периодической с периодом , если для любого х из области определения f(x) = f(x+Т) = f(x-Т).

График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.

3. Монотонность (возрастание, убывание)

Функция f(x) возрастает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x1 2 выполнено неравенство f(x1)2).

Функция f(x) убывает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x1 2 выполнено неравенство f(x1) f(x2).

4. Экстремумы

Точка Хmax называется точкой максимума функции f(x) , если для всех х из некоторой окрестности Хmax , выполнено неравенство f(х) f(Xmax).

Значение Ymax=f(Xmax) называется максимумом этой функции.

Хmax – точка максимума
Уmax – максимум

Точка Хmin называется точкой минимума функции f(x) , если для всех х из некоторой окрестности Хmin , выполнено неравенство f(х) f(Xmin).

Значение Ymin=f(Xmin) называется минимумом этой функции.

Xmin – точка минимума
Ymin – минимум

Xmin, Хmax – точки экстремума
Ymin, Уmax – экстремумы.

5. Нули функции

Нулем функции y = f(x) называется такое значение аргумента х , при котором функция обращается в нуль: f(x) = 0.

Х123 – нули функции y = f(x).

Функциональное описание реальных процессов

Почему не бывает животных, какой угодно величины? Почему, например, нет слонов в три раза большего роста, чем существуют, но тех же пропорций? Наш ответ таков: стань слон в три раза больше, вес его тогда увеличился бы в двадцать семь раз, как куб размера, а площадь сечения костей и, следовательно, их прочность — только в девять раз, как квадрат размера. Прочности костей уже не хватило бы, чтобы выдержать непомерно увеличившийся вес. Такой слон был бы раздавлен собственной тяжестью.

В основу рассуждения положены две строгие математические зависимости. Первая устанавливает соответствие между размерами подобных тел и их объемами: объем изменяется, как куб размера. Вторая связывает размеры подобных фигур и их площади: площадь изменяется, как квадрат размера. Этим выразительным примером мы хотим начать разговор о числовых функциях числового аргумента, которые можно использовать для описания реальных процессов.

 Чудо английского часового мастера Джон Гаррисон.

Перенесемся на три века вспять. Парусник в открытом море. Как определить долготу места, в котором он находится? Очень просто, если на корабле есть часы, поставленные в порту отправления. Нужно измерить местное время по солнцу и сравнить с показаниями часов. Расхождение пропорционально разнице по долготе между тем пунктом, где находится корабль, и тем, в котором были поставлены часы.

Точный закон этой    пропорциональности    позволяет вывести простое соотношение: тремстам шестидесяти градусам земной окружности соответствуют двадцать четыре часа, за которые  Земля совершает полный оборот вокруг своей оси. Поэтому если часы отстают по сравнению с местным временем на шесть часов, корабль находится на 90° восточнее того места, где были поставлены часы. Спешат на четыре часа — на 60° западнее. Разумеется, для подобного определения долготы нужны очень точные часы.

А как можно требовать точности от маятниковых часов, которыми снабжен парусник? Их ход зависит от длины маятника, а она то и дело меняется: теплый день сменяется прохладной ночью, и во время плавания парусник приближается то к голубым полярным льдам, то к пальмам тропиков. Тепло удлиняет маятник, холод укорачивает. Такова неумолимая реальность.

И все-таки нашелся способ избежать неизбежного зла. Чудо совершил в 1726 году английский часовой мастер Джон Гаррисон. Это удалось ему потому, что он знал функциональную зависимость длины металлического стержня от температуры, до которой стержень нагрет.

Эту функцию описывает прямая линия.  Такая зависимость называется линейной. Суть ее в том, что одинаковым приращениям аргумента всегда соответствует одно и то же приращение функции. Иначе говоря, функция изменяется равномерно при равномерном росте аргумента.

В нашем примере равномерному нарастанию температуры соответствует равномерное удлинение стержня. Полное его удлинение пропорционально начальной длине. Но что особенно важно — стержни из разных металлов удлиняются по-разному от одного и того же прироста температуры. Скажем, цинк расширяется примерно в  три   раза   сильнее, чем сталь, этим и воспользовался Гаррисон: он собрал маятник из цинковых и стальных стержней. Общая длина стальных стержней в три раза превышала длину цинковых. Расширяясь при нагревании и сокращаясь при охлаждении, стержни взаимно компенсировали изменения своей длины, и груз маятника оставался на одном и том же расстоянии от точки подвеса.

Ключ к небольшой математической проблеме

Отметим, что не всякую функциональную зависимость удается выразить краткой формулой, например, ключ от дверного замка: сейчас он в буквальном смысле слова послужит ключом к небольшой математической проблеме, к которой нас подводит беседа о функциях. Знаете ли вы, как таким ключом открывается дверной замок? Что происходит внутри этого слесарно-механического устройства, когда вы вставляете ключ в замочную скважину и   делаете положенное число оборотов? Чтобы замок открылся, нужно провернуть барабан, в котором сделана скважина. Но этому препятствуют штифты, стоящие тесным строем внутри скважины, скользящие вверх-вниз. Каждый из штифтов нужно поднять на такую высоту, чтобы их верхние торцы оказались вровень с поверхностью барабана. Если они выступят за нее, то войдут в прорезь обоймы, расположенную точно над заочной скважиной; если, не достигнут поверхности барабана, то из прорези обоймы находящиеся там штифты вдвинутся в замочную скважину. И в том и в другом случае вращение барабана будет застопорено.

Штифты в замочной скважине поднимает ключ, вдвигаемый в нее. При этом высота каждого штифта, будучи сложена с высотой профиля ключа в соответствующей точке, должна дать в сумме диаметр барабана. Только тогда он провернется.

Ну а причем здесь функция? Да притом, что, с точки зрения математика, вся эта механика есть не что иное, как операция сложения двух функций. Одна из них — это профиль ключа. Другая — линия, очерчивающая верхние торцы штифтов, когда замок заперт. Секрет дверного замка в том, что в результате сложения двух функций, выраженных профилем ключа и строем штифтов, получается функция-константа, постоянное значение которой равно диаметру барабана.




Золотое правило механики

Вся богатейшая семья механизмов, окружающих современного человека, начиналась когда-то с семи простых машин. Древние знали рычаг, блок, клин, ворот, винт, наклонную плоскость и зубчатые колеса. Эти нехитрые по теперешним представлениям устройства умножали силу человека. Но, во сколько раз выиграешь в силе — во столько же раз проиграешь в расстоянии. Так гласит золотое правило механики, заключающее в себе теорию семи простых машин.


Закон обратной пропорциональности глядит на нас и со шкалы радиоприемника. Вы крутите ручку настройки, и стрелка движется вдоль шкалы, на которой два ряда чисел — метры и мегагерцы, длина волн и их частота. Длина волн растет, частота падает. Но присмотритесь: при любом сдвиге стрелки во сколько раз увеличилась длина волны, во столько же раз упала частота.

График гиперболы можно увидеть на лабораторном столе физика, демонстрирующего явления капиллярности. В штативе несколько тонких стеклянных трубочек, расположенных в порядке   возрастания   диаметров. Известно, что в тонком канале смачивающая жидкость поднимается тем выше, чем меньше его диаметр. Поэтому в самом узком канале жидкость поднялась выше всего, в другом канале, диаметр которого в два раза больше, — в два раза ниже, в третьем, что толще первого в три раза,— в три раза ниже и так далее.

А теперь опустим в эту же жидкость клин, образованный двумя стеклянными пластинками, сомкнутыми по вертикальному ребру. В узкую щель между стеклами жидкость устремится, как в капилляр. Высота ее подъема определится шириной зазора. А он увеличивается равномерно по мере удаления от острия клина. Поэтому свободная поверхность жидкости четко вырисовывает  гиперболу — график обратной пропорциональности.



Звездный график

Сколько звезд на небе?  Одним из первых, кто попытался точно ответить на этот вопрос, был древнегреческий астроном Гиппарх. При его жизни в созвездии Скорпиона вспыхнула новая звезда. Гиппарх был потрясен: звезды смертны, они, как люди, рождаются и умирают. И чтобы будущие исследователи могли следить за возникновением и угасанием звезд, Гиппарх составил свой звездный каталог. Он насчитал около «тысячи» звезд и разбил их по видимому блеску на шесть групп. Самые яркие Гиппарх назвал звездами первой величины, заметно менее яркие — второй, еще столь же менее яркие — третьей и так далее в порядке равномерного убывания видимого блеска — до звезд, едва видимых невооруженным глазом, которым была присвоена шестая величина.

Когда ученые получили в свое распоряжение чувствительные приборы для световых измерений, стало возможным точно определять блеск звезд. Стало возможным сравнить, насколько соответствует данным таких измерений традиционное распределение звезд по видимому блеску, произведенное на глаз. Оценки того и другого рода сведем на одном графике. От каждой из шести групп, на которые звезды распределил   Гиппарх, возьмем по одному типичному представителю. По вертикальной оси будем откладывать блеск звезды в единицах Гиппарха, то есть ее звездную величину, по горизонтальной — показания приборов. За масштабную единицу горизонтальной оси примем блеск звезды «б Тельца», стоящей посредине в ряду представителей звездного солнца. Отметки на горизонтальной оси располагаются неравномерно. Объективные (прибор) и субъективные (глаз) характеристики блеска не пропорциональны друг другу.

С каждым шагом по шкале звездных величин прибор регистрирует возрастание блеска не на одну и ту же величину, как могло бы показаться, а примерно в два с половиной раза. Образно говоря, глаз сравнивает источники света по блеску, задаваясь вопросом «во сколько раз?», а не вопросом «на сколько?». Мы отмечаем не абсолютный, а относительный прирост блеска. И когда нам кажется, что он возрастает или убывает равномерно, в действительности мы шагаем по его шкале все более размашистыми шагами, покрывая при этом поистине гигантский диапазон: в миллион миллионов раз различаются по блеску источники света, самый слабый и самый мощный, воспринимаемые человеческим глазом.


Именно в силу описанной физиологической особенности звезды, ярко горящие на ночном небе, не видны днем, тонут в ослепительном блеске солнца, рассеянном по небосводу. И там и здесь сияние звезд дает одну и ту же добавку к свету фона. Однако в первом случае (ночью) эта добавка велика по сравнению с мерцанием неба, во втором же (днем) составляет весьма незначительную долю от солнечного блеска (менее чем миллиардную даже для самых ярких звезд).

Математические портреты пословиц

Современная математика знает множество функций, и у каждой свой неповторимый облик, как неповторим облик каждого из миллиардов людей, живущих на Земле. Однако при всей непохожести одного человека на другого у каждого есть руки   и голова, уши и рот. Точно так же облик каждой функции можно представить сложенным из набора характерных деталей. В них проявляются основные свойства функций.

«Выше меры конь не скачет» Если представить траекторию скачущего коня как график некоторой функции, то высота скачков в полном соответствии с пословицей будет ограничена сверху некоторой «мерой». Это будет знакомый график функции синуса.

«Пересев хуже недосева» Урожай лишь до некоторой поры растет вместе с плотностью посева, дальше он снижается, потому что при чрезмерной густоте ростки начинают глушить друг друга. Эта закономерность станет особенно наглядной, если изобразить ее графиком, где урожай представлен как функция плотности посева. Урожай максимален, когда поле засеяно в меру. Максимум— это наибольшее значение функции по сравнению с ее значениями во всех соседних точках. Это как бы вершина горы, с которой все дороги ведут только вниз, куда ни шагни.

«Чем дальше в лес, тем больше дров» Можно изобразить графиком, как нарастает количество дров по мере продвижения вглубь леса – от опушки, где все давным-давно собрано, до чащоб, куда не ступала нога заготовителя. График представляет количество дров как функцию пути. Согласно пословице эта функция неизменно возрастает. Такое свойство функции называется монотонным возрастанием.

«Каши маслом не испортишь»  Качество каши можно рассматривать как функцию количества масла в ней. Согласно пословице эта функция не уменьшается с добавкой масла. Она, возможно, увеличивается, но может оставаться и на прежнем уровне. Подобного рода функция называется монотонно неубывающей.

Математические   категории, о   которых шла речь, естественным образом делятся на две группы. Одни описывают поведение функции в окрестности некоторых характерных точек (максимум, минимум, перегиб). Другие описывают поведение функции в некоторых промежутках (выпуклость, вогнутость, убывание, возрастание).

Теория реальных газов

Физикам важно знать, как ведут себя газы при различных температурах и давлениях. Поведение газа определяется    взаимодействием    между его    молекулами. Предположим для простоты, как это часто делается в физике, что молекулы — это маленькие упругие шарики. Рассмотрим две такие молекулы, и будем изучать, какому закону подчиняется сила их взаимодействия.

Известно, что на больших расстояниях молекулы взаимно притягиваются, причем с ростом расстояния сила притяжения убывает, стремясь к нулю. При сближении молекул она, напротив, возрастает. Когда шарики сближаются до соприкосновения, в игру вступает еще одна, противоположно направленная сила — сила упругого отталкивания. Она тем больше, чем сильнее прижаты шарики друг к другу, чем меньше расстояние между их центрами. Гипотетически можно представить центры молекул сближающимися на сколь угодно малое расстояние, отчего сила их взаимного отталкивания возросла бы неограниченно.

Взаимно обратные функции

Перенесемся в поликлинику. Врач велит пациенту измерить температуру. В стеклянной трубочке, которую пациент сует под мышку, заключен столбик ртути. Он удлиняется от тепла человеческого тела. Вспоминается часовая мастерская Гаррисона и опыты, в которых мастер определял длину металлических стержней как функцию их температуры. Здесь врач проделывает нечто обратное: по длине жидкого ртутного «стерженька» он определяет температуру пациента. Он строит обратную функцию по отношению к той, которую изучал Гаррисона.

Разумеется, к вопросу можно подойти с другой стороны и назвать прямой функцию, с которой имеет дело врач, и обратной ту, значение которой прославило Гаррисона. А если быть справедливым до конца, то обе функции нужно назвать взаимно обратными. Противопоставлять их имеет не больше смысла, чем решать, кто из двух близнецов старше. Правда, порой одна из двух взаимно обратных функций более употребительна, более привычна, ее символ примелькался больше, и подобная неравноценность играет свою роль при распределении званий «прямая» и «обратная».

Космодром. Ракета, летящая в космическом пространстве, наращивает скорость по закону логарифма: именно эта функция позволяет по массе израсходованного топлива указать скорость ракеты. Скорость — функция, масса топлива — аргумент. Но часто возникает обратная задача, когда исходным пунктом расчета является скорость ракеты. Чтобы вывести спутник на орбиту, ракета должна развить первую космическую скорость. Какое количество топлива потребуется ракете, чтобы достичь назначенной скорости? Масса топлива в этом вопросе уже мыслится как функция, скорость — как аргумент. Задачу решает функция, обратная к логарифмической функции, — показательная.




















Т ест по теме Свойства функции

  1. Указать область определения функции, заданной графиком:

1) (2;4) 2) [-4;2] 3) (-1;3] 4) [-4;4)



  1. Н айти точку максимума функции y = f(x), заданной на промежутке [-2;5] графиком:

1) 5 2) 4 3) -1 4) 6

  1. Н айти множество значений функции y = sinx – 12.

1) [11; 13] 2) [-13; -11] 3) [-12; -11] 4) R



  1. Указать область значений функции, заданной графиком:



1) [-3; 4] 2) [-3; 0] 3) [-4; -3] 4) [-4;4]



  1. Найти точку минимума функции y = f(x), заданной на промежутке [-3;7] графиком:

1) 7 2) -2 3) -3 4)0

  1. Найти множество значений функции y = cos3x – 10.

1 ) [-11; -9] 2) [9; 11] 3) [-10; -9] 4) [-1;1]



  1. Указать область определения функции, заданной графиком:

1 ) [-4;- 3)U(1;4,5) 2) [-3; 1)U(4,5;5) 3) [-4; 5) 4) [-3;3]

  1. Найти точку минимума функции y = f(x), заданной на промежутке [-2;7] графиком:

1) -2 2) -3 3) 5 4) 2

  1. Найти множество значений функции y = sin5x +12.

1) [11; 13] 2) [10; 13] 3) [-1; 1] 4) [10;11]

  1. У казать область значений функции, заданной графиком:

1) (-1; 6) 2) (-3;4) 3) (-1; 0)U(2; 5] 4) (-3; 5]

  1. Найти промежутки, в которых функция y = g(x), заданная на промежутке [-6;6] графиком, принимает положительные значения.



1) (-5,3; 0)U(2; 4) 2) (-4;-3)U(-1; 1)U(3; 6) 3) (0; 4] 4) [-6; -4)U(-3; -1)U(1; 3)



  1. Указать функцию, убывающую на всей области определения:

1)   2)   3)   4)  

  1. Найти промежутки, в которых функция y = g(x), заданная на промежутке [-8;4] графиком, принимает отрицательные значения.





1) (-7; -2)U(0; 2) 2) [-7; -2]U[0; 2] 3) [-8;-6)U(-5 ;-3)U(-1; 1) 4) (0; 4]

  1. Указать функцию, убывающую на всей области определения:

1)   2)   3)   4 

  1. Н айти промежутки, в которых функция y = g(x), заданная на промежутке [-5;5] графиком, принимает отрицательные значения.





1) (-5; -4)U(-2; 2) U(4; 5) 2) [-5; -4]U[-2; 2] U[4; 5] 3) (-4;-2)U(2 ;4) 4) [-4; -2]U[2; 4]

Эталоны ответов теста по теме: Свойства функции


1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

3

4

1

2

4

1

2

1

4

1

2

4

3




Критерии оценивания тестовых заданий

14 вопросов 5 (отлично) (14-12 ответов)

14 вопросов 4 (хорошо) (11-9 ответов)

14 вопросов 3 (удов) (8 ответов)


























Литература

  1. Алимов Ш.А. и др. Алгебра и начала анализа. 10 (11) кл. – М.: 2018

  2. Башмаков М.И. Сборник задач: учеб. пособие (базовый уровень). 11 кл. М.: 2012

Интернет-ресурсы

  1. http://school-collection.edu.ru – Электронный учебник «Математика в

школе, XXI век».

  1. http://fcior.edu.ru - информационные, тренировочные и контрольные материалы.

  2. www.school-collection.edu.ru – Единая коллекции Цифровых образовательных ресурсов















-75%
Курсы повышения квалификации

Развитие пространственных представлений школьников в обучении математике в условиях реализации ФГОС

Продолжительность 36 часов
Документ: Удостоверение о повышении квалификации
3000 руб.
750 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Пособие по теме Свойства функции (1.58 MB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт