Меню
Разработки
Разработки  /  Математика  /  Уроки  /  Прочее  /  Первообразная функция, неопределённый интеграл и его свойства

Первообразная функция, неопределённый интеграл и его свойства

Преобращование функций, неопределенный интеграл и его свойства в математике.

20.12.2016

Содержимое разработки

Первообразная функция, неопределённый интеграл и его свойства

К понятию первообразной функции приводят многие задачи математического анализа и физики. Рассмотрим былинный физический пример: известен закон изменения скорости тела , требуется найти закон изменения координаты  данного тела.

Скорость – это производная от пройдённого пути:  (см. урок о смысле производной), таким образом, для решения задачи необходимо по заданной функции  (производной) восстановить функцию .

Общая же постановка вопроса такова: в распоряжении есть некоторая функция  и возникает потребность выяснить, от какой функции она произошла. То есть, необходимо найти ТАКУЮ функцию , чтобы .

Определение: функция  называется первообразной для функции  на некотором промежутке, если для всех  из этого промежутка выполняется равенство  или, что то же:  (раскрывать дифференциал мы научились ещё на первом уроке о неопределённом интеграле).

Например, для  первообразной функцией на всей числовой прямой будет являться функция . И действительно, для любого «икс»:
.

Простое, но требующее доказательства утверждение:

Теорема: пусть  – какая-нибудь первообразная для функции  на некотором промежутке. Тогда функция , где  – произвольная константа, тоже будет первообразной функцией для  на данном промежутке.

Доказательство: поскольку производная константы равна нулю, то:
, следовательно,  – первообразная для функции  по определению первообразной, что и требовалось доказать.

Так, для функции  первообразной будет являться любая функция из множества , где  (мысленно поподставляйте конкретные числовые значения).

Докажем обратное утверждение: любая другая первообразная  для функции  отличается от  лишь на приплюсованную константу, иными словами: .

Вот это уже менее очевидный факт. И в самом деле – вдруг для функции  существует не только , а какая-нибудь ещё первообразная?

Пусть  – это две первообразные для функции  на некотором промежутке. Тогда для любого «икс» из данного промежутка производная разности будет равна:

, или если записать короче:

Но с другой стороны, из дифференциального исчисления известно, что данному условию удовлетворяет функция-константа и только она:

Откуда и следует равенство , которое требовалось доказать. Таким образом, любая первообразная для функции  имеет вид

Вуаля:

Определение: множество всех первообразных  для функции  называется неопределённым интегралом от функции  и обозначается символом . Таким образом, по определению:

, где

Напоминаю, что функция  называется подынтегральной функцией,  – подынтегральным выражением, а сам процесс отыскания множества первообразных   – интегрированием. Интегрирование – это восстановление функции  по её производной  (обратное действие по отношению к дифференцированию).

Для нашего демонстрационного примера:
, где

Проверка:  – исходная подынтегральная функция.

Любая ли функция интегрируема? Нет.

Сформулируем достаточное условие интегрируемости: если на некотором промежутке функция непрерывна, то она интегрируема на нём.

Как видите, условие довольно-таки лояльное – для существования первообразной достаточно лишь непрерывности. Ниже по тексту, если не сказано иного, все функции будем считать интегрируемыми.

Свойства неопределённого интеграла

Нумеровать крайне не люблю, но здесь лучшего варианта не видно:

1) Производная от неопределённого интеграла равна подынтегральной функции; дифференциал от неопределённого интеграла равен подынтегральному выражению:

Доказательство: по определению неопределённого интеграла: , следовательно:
, что и требовалось доказать.

Второе. По правилу раскрытия дифференциала (а точнее, по определению дифференциала) и только что доказанному пункту:

Потёрто.

2) Неопределённый интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

Учитывая, что , свойство можно переписать в следующем виде:

Тут даже доказывать ничего не надо, поскольку  и получается непосредственно само определение неопределённого интеграла.

Как видите, в обоих случаях значки дифференциала и интеграла взаимно уничтожаются, что естественно.

Следующие свойства вам хорошо знакомы – это мировые свойства линейности, которые справедливы и для других типов интегралов: определённых, двойных, тройных, криволинейных и пр.

3) Константу можно вынести из-под знака интеграла

То есть, если , то

Доказательство: а вы как думали? =)

Найдём производную левой части. Используем свойство №1:

Найдём производную правой части. Используем правило дифференцирования  и свойство №1:

Получены одинаковые результаты, из чего и следует справедливость данного свойства.

Вообще, многие доказательства не столько сложны, сколько занудны и формальны – используются определения, ранее доказанные свойства, теоремы и т.д. Но, несмотря на их сухость, немалая часть студентов входит во вкус и даже начинает читать учебники по высшей математике в любой свободный момент  =) Будьте осторожны =)

4) Неопределённый интеграл от алгебраической суммы  функций равен алгебраической сумме интегралов:

Справедливо для любого количества слагаемых.

Свойство проверяется точно так же, как и предыдущее – берутся производные от обеих частей. Но доказывать его я, пожалуй, не буду – хорошего понемножку =)

Перейдём к ещё более интересному разделу:



-75%
Курсы повышения квалификации

Методы решения функциональных уравнений и неравенств

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
1000 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Первообразная функция, неопределённый интеграл и его свойства (40.76 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт