Меню
Разработки
Разработки  /  Технология  /  Уроки  /  7 класс  /  Интегрированный урок-практикум по теме «Полимерные композиционные материалы»

Интегрированный урок-практикум по теме «Полимерные композиционные материалы»

Дидактичекский материал позволяет обучающимся самостоятельно составить сравнительную характеристику материалов по теме урока «Полимерные композиционные материалы», на основе чего,выявить ключевые особенности каждого из них.

12.06.2018

Содержимое разработки

Дидактический материал для самостоятельной работы обучающихся в классе.




Тема урока: «Полимерные композиционные материалы»

Большую группу представляют полимерные композиционные материалы (ПКМ) – композиционные материалы, матрицей в которых служит полимерный материал. Их применение дает значительный экономический эффект.

Формирование деталей из полимерных композиционных материалов может осуществляться как методами, присущими формованию изделий из полимеров (литье под давлением, прессование и др.), так и специальными методами (намотка и др.), свойственными только данному классу материалов.

ПКМ являются одним из самых многочисленных и разнообразных видов материалов. Их применение в различных областях дает значительный экономический эффект. Например, использование ПКМ при производстве космической и авиационной техники позволяет сэкономить от 5 до 30% веса летательного аппарата. А снижение веса, например, искусственного спутника на околоземной орбите на 1 кг приводит к экономии 1000 долларов. В качестве наполнителей ПКМ используется множество различных веществ.

Не было бы современных композитов, если бы ученые не придумали пластмассы. До этого единственным источником клея и связующих веществ служили природные смолы, которые получали из животных или растений. А в начале XX века разработали винил, полистирол, фенол и полиэстр. Эти материалы значительно превосходили ранее используемые.
Но и пластмассы не могли обеспечить достаточную прочность. Нужно было армирование получше. Впервые наполненный полимер начал производить доктор Бейкеленд (Leo H.Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола – вещество хрупкое, обладающее невысокой прочностью. Бейкеленд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал – бакелит – приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя – пресс-порошок - под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это – ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются по сей день. Применяют для изготовления жестких и эластичных поливинилхлоридных материалов для производства труб, электроизоляции, облицовочных плиток и т.д. В1935 году фирма Owens/Corning разработала стекловолокно. В сочетании с пластиковыми полимерами оно представляет собой чрезвычайно прочную и при этом очень легкую структуру. Это стало началом армированной полимерной промышленности. Альтернативные материалы, позволяющие снизить вес конечного изделия, были необходимы в военном авиастроении. Очень быстро инженеры поняли преимущества композитов в плане их веса и прочности. В1946 году разработали лодку с композитным корпусом, примерно в то же время сделали доску для серфинга из стекловолокна.


Стеклопластики
Полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Эти материалы обладают достаточно высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн.

Углепластики
Наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Для изготовления углепластиков используются те же матрицы, что и для стеклопластиков – чаще всего – термореактивные и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики – очень легкие и, в то же время, прочные материалы. Углепластики используются в авиации, ракетостроении, машиностроении, производстве космической техники, медтехники, протезов, при изготовлении легких велосипедов и другого спортивного инвентаря.
На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы – наиболее термостойкие композиционные материалы, способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С.

Боропластики
Композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Благодаря большой твердости нитей, получающийся материал обладает высокими механическими свойствами (борные волокна имеют наибольшую прочность при сжатии по сравнению с волокнами из других материалов) и большой стойкостью к агрессивным условиям, но высокая хрупкость материала затрудняет их обработку и накладывает ограничения на форму изделий из боропластиков. Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.


Органопластики
Композиты, в которых наполнителями служат органические синтетические, реже – природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Материал содержит 40–70% наполнителя. Органопластики находят широкое применение в авто-, судо-, машиностроении, авиа- и космической технике, радиоэлектронике, химическом машиностроении, производстве спортивного инвентаря и т.д.

Текстолиты
Слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х на основе фенолформальдегидной смолы. Полотна ткани пропитывали смолой, затем прессовали при повышенной температуре, получая текстолитовые пластины. Роль одного из первых применений текстолитов – покрытия для кухонных столов – трудно переоценить.
Основные принципы получения текстолитов сохранились, но сейчас из них формуют не только пластины, но и фигурные изделия. И, конечно, расширился круг исходных материалов. В качестве наполнителя используются ткани из самых разнообразных волокон – хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Текстолит обладает целым рядом достоинств, к главным из которых следует отнести низкий коэффициент трения, небольшую плотность, довольно высокую механическую прочность, легкость в любой механической обработке. Кроме того, текстолит – великолепный диэлектрик, что позволяет, наряду с диэлектрическими коврами широко использовать этот материал в энергетической и электротехнической промышленности. Необходимыми условиями эксплуатации текстолита являются диапазон температур от -40 до +105ºС

https://plastinfo.ru/information/articles/110/

https://geektimes.ru/post/240596/

Основной вид деятельности обучающихся на уроке:

  • Составление опорного конспекта: полимерные композиционные материалы; методы присущие формованию изделий из полимеров; область применение ПКМ

  • Заполнение таблицы на основе раздаточного материала.


Сравнительная характеристика полимерных композиционных материалов

Название материала

Состав матрицы

Армированный

наполнитель

Свойства материала

Область применения

Стеклопластик








Углепластик








Боропластик








Органопластик








Текстолиты

эпоксидные, полиэфирные и фенольные смолы

ткани из самых разнообразных волокон – хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д.


низкий коэффициент трения, небольшую плотность, довольно высокую механическую прочность, легкость в любой механической обработке, хороший диэлектрик, диапазон температур от -40 до +105ºС

в энергетической и электротехнической промышленности.



-75%
Курсы повышения квалификации

Теория и методика преподавания технологии в условиях реализации ФГОС ОО

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
1000 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Интегрированный урок-практикум по теме «Полимерные композиционные материалы» (20.11 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт